

EPSRC Programme Grant EP/G059063/1

Public Paper no. 135

The Benefits of Formalising Design Guidelines:
A Case Study on the Predictability of

Drug Infusion Pumps

Paolo Masci, Rimvydas Rukšėnas, Patrick Oladimeji,
Abigail Cauchi, Andy Gimblett, Yunqiu Li,

Paul Curzon & Harold Thimbleby

Masci, P., Rukšėnas, R., Oladimeji, P., Cauchi, A., Gimblett,

A., Li, Y., Curzon, P., & Thimbleby, H. (2015).
The benefits of formalising design guidelines: A case study on

the predictability of drug infusion pumps.
Innovations in Systems and Software Engineering, 11, 73–93.

PP release date: 10 June 2013

file: WP135.pdf

Noname manuscript No.
(will be inserted by the editor)

The benefits of formalising design guidelines: A case study on

the predictability of drug infusion pumps

Paolo Masci · Rimvydas Rukÿsúenas · Patrick Oladimeji · Abigail Cauchi ·
Andy Gimblett · Yunqiu Li · Paul Curzon · Harold Thimbleby

Received: XXX / Accepted: YYY

Abstract A demonstration is presented of how auto-
mated reasoning tools can be used to check thepre-
dictability of a user interface. Predictability concerns
the ability of a user to determine the outcomes of their
actions reliably. It is especially important in situations
such as a hospital ward where medical devices are as-
sumed to be reliable devices by their expert users (clini-
cians) who are frequently interrupted and need to quick-
ly and accurately continue a task. There are several
forms of predictability. A deÞnition is considered where
information is only inferred from the current percepti-
ble output of the system. In this deÞnition, the user is
not required to remember the history of actions that led
to the current state. Higher-order logic is used to specify
predictability, and the Symbolic Analysis Laboratory
(SAL) is used to automatically verify predictability on
real interactive number entry systems of two commer-
cial drug infusion pumps Ñ devices used in the health-
care domain to deliver ßuids (e.g., medications, nutri-
ents) into a patientÕs body in controlled amounts. Ar-
eas of unpredictability are precisely identiÞed with the
analysis. VeriÞed solutions that make an unpredictable
system predictable are presented through design modiÞ-
cations and veriÞed user strategies that mitigate against
the identiÞed issues.

Keywords Predictability, Interactive System Design,
Model Checking, Higher Order Logic, SAL

Paolo Masci, Rimvydas Rukšėnas, Paul Curzon
Queen Mary University of London
School of Electronic Engineering and Computer Science
E-mail: {paolo.masci,rimvydas,paul.curzon}@eecs.qmul.ac.uk

Patrick Oladimeji, Abigail Cauchi,
Yunqiu Li, Harold Thimbleby
Future Interaction Technology Lab
Swansea University, www.fitlab.eu
E-mail: {cspo,csabi,yunqiu.li,h.thimbleby}@swansea.ac.uk

1 Introduction and motivation

Infusion pumps are medical devices used to deliver drugs
to patients at controlled rates. They are ÒprogrammedÓ
by clinicians, and the process consists of interacting
with buttons on the pump user interface for navigating
through menus and entering values to set the infusion
parameters. Infusion pumps are used in hospital wards,
and increasingly in the patientÕs home. These devices
have become a major concern because of several un-
expected accidents due to use errors. For instance, a
typical problem reported in drug adverse events with
infusion pumps is that a clinician may enter a number
ten times larger than intended [41]. Under-dosing is also
a problem: if a patient receives too little of a drug, their
recovery may be delayed or they may be in unnecessary
pain.

Such errors, unfortunately, are not rare. In the UK,
for instance, a recent bulletin from the UK govern-
ment agency MHRA (the UK Medicines and Health-
care products Regulatory Agency), which is responsi-
ble for ensuring that medicines and medical devices
work, reports that between the years 2005 and 2010
there were more than one thousand incidents involv-
ing infusion pumps in the UK alone (this is likely to
be under-reported). A series of the errors were due to
number entry [23]; examples include setting the wrong
rate, confusing primary and secondary rates, and not
conÞrming the set rate or the conÞguration.

Although use error is claimed as the primary causal
factor of many of these incidents, careful enquiries usu-
ally suggest that actions carried out by clinicians typ-
ically have reasonable explanations, and the combina-
tion of multiple small failures is typically the cause of
these incidents rather than unskilled behaviour or neg-
ligence [28,30]. In the US, for instance, the FDA has

2 Paolo Masci et al.

analysed incidents due to infusion pumps, and there is
evidence that these use errors are actually caused by
the device design [12].

In order to contrast this negative trend, the FDA
has launched the Infusion Pump Improvement Initia-
tive with the aim to promote using veriÞcation tech-
niques for analysis and development of infusion pumps.
As part of this initiative, Kim et al [20] have demon-
strated how a model-based development approach can
be used to implement software for the control logic of
a Patient Controlled Analgesia (PCA) pump prototype
that is veriÞed against the Generic PCA (GPCA) safety
requirements provided by the FDA.

Our work presented in this paper complements the
above in that the focus is on the veriÞcation of user
interfaces of commercial infusion pumps. It takes a dif-
ferent approach with a focus on interaction design. That
is, in this work we demonstrate how veriÞcation tools
can be used to identify and solve problems related to
predictability of a user interface [13]. Predictability is a
design principle concerning the ability of a user to de-
termine the outcomes of their actions on a device user
interface reliably. This property is especially important
for safety-critical subsystems of the device user inter-
face (e.g., the number entry system) in situations such
as a hospital ward where medical devices are assumed
to be reliable devices by their expert users (clinicians)
who are frequently interrupted and need to quickly and
accurately continue a task.

In the next section, we motivate the choice of pre-
dictability by illustrating how it relates to high-level de-
sign principles presented in the ANSI/AAMI HF75:2009
human factors standard. This standard is used as guid-
ance document by designers of user interfaces for med-
ical devices and by medical device regulators such as
the US Food and Drug Administration.

2 Predictability and the ANSI/AAMI
HF75:2009 standard for medical devices

The ANSI/AAMI HF75:2009 standard has been devel-
oped by the Association for the Advancement of Med-
ical Instruments (AAMI) in 2009 with the aim to cre-
ate a reference document that covers general human
factors engineering principles for the development of
interactive medical devices. The principles covered in
the standard have several links with the predictability
property. In the following we provide excerpts from the
standard and discuss these links.

“Users can be forgetful, become distracted by other
tasks, or be interrupted during device use. There-
fore, designers should not depend on users to re-

member information needed to perform a task. It
is far better to present to users the crucial infor-
mation they need to perform the task correctly.”
— HF75:2009, Chapter 4, Section 6.4

The deÞnition of predictability that we consider en-
sures that users can operate the device reliably and with
conÞdence without remembering the history of past ac-
tions. There is empirical evidence that interruptions
have a disruptive impact on peopleÕs performance and
reliability [39]. If nurses are interrupted while setting
up an infusion, they need to stop their task, turn their
attention to the interrupting task, and then resume the
infusion task. If the pump user interface does not show
enough information to enable them to determine the
exact device state, then they may fail to correctly re-
sume the task. For example, a nurse might think they
completed a step that they had not and so on resump-
tion, they incorrectly skip that step. Laboratory ev-
idence suggests that being confused about the step to
resume on is a common problem on resumption [5]. Fur-
thermore, if nurses are aware of this potential hazard,
they may try to apply workarounds, such as resetting
the device and starting over again. Such workarounds
considerably slow down the number entry task which is
a problem in itself, but may also result in new issues.
For instance, as a side-e!ect such workaround actions
may reset other parameters of the device, such as the
unit of measurement, without the nurse realising.

“People usually have a mental model or expecta-
tion of how a new device works. Usually, this expec-
tation is based on previous experience using simi-
lar devices. Users might expect certain controls to
function in a particular manner and are surprised
if a control functions di!erently.” — HF75:2009,
Chapter 4, Section 8.1

Mental models are conceptual models developed by
users to explain how things work [25]. Mental models
developed by expert userscan be highly accurate. How-
ever, even with such expertise, users frequently make
errors and depart from these procedures, particularly
when situations change or fail to meet expectations.
This can occur in boundary situations that are rarely
encountered so not built in to the conceptual model de-
veloped by users. Reliance on perceptible cues can help
users understand the situation. Predictability ensures
that those cues (whatever they are) are always there
and are accurate.

“One way that designers seek to simplify medi-
cal devices is to incorporate multiple operational
modes. In principle, multiple operational modes are
a sensible way to facilitate context-specific tasks

The benefits of formalising design guidelines: A case study on the predictability of drug infusion pumps 3

and to limit user exposure to extraneous capa-
bilities. However, problems can arise if the user
does not realise the medical device is in the wrong
mode.” — HF75:2009, Chapter 4, Section 9.6

Predictable devices allow users to tell what mode
the device is in. The limited physical dimension of de-
vices and their ever-increasing number of functionalities
push developers to overload the individual user inter-
face elements. For instance, theup button on a pump
user interface, which is typically used to increase the
infusion rate on these devices, may also be used to pro-
vide other functionality in some device modes such as,
conÞrming the infusion rate, undoing the last action,
or recalling a rate from the device memory. However,
even though the outcome of this mode-dependent func-
tionality a!ects the interaction, its meaning in the cur-
rent mode might not be readily visible to the user. This
would make it di"cult for the user to tell what exactly,
in this case, the up button does in the current state
of the system and hence how to plan future actions.
It is also worth noting that skilled users, such as clini-
cians, tend to commit errors of the Òstrong but wrongÓ
type [30]. That is, they are committed with misplaced
conÞdence where, say, an attentional check might be
omitted or mistimed, or where some aspect of the envi-
ronment is misinterpreted. It is also worth noting that
predictability is important in situations where undo
operations are not possible. This is vital for infusion
pumps at the point where an infusion is started, what-
ever the design. Once drug is pumped into a patient
this can only be stopped not undone, and the e!ects of
getting this wrong are safety critical.

3 Overview of the approach

The predictability analysis checks whether a device user
interface enables users to tell what state the device is in
simply by looking at its current persistent output and
then predict the next state generated by interacting
with the device (e.g., by clicking a button). This analy-
sis targets critical subsystem of user interfaces, such as
the number entry system.

This form of predictability has been formalised in[14,
13] through the Program-Interpretation-E!ect (PIE)
framework [14,15], which describes interactive systems
in terms of sequence of commands issued by users (de-
nominated programs), device states perceived by the
users (denominatede↵ects), and relations between com-
mand sequences and their e!ects on perceived device
states (denominatedinterpretations). Following the no-
tation of the PIE framework, a predictable system is
deÞned as follows:

predictable(e) ! ! p, q, r " P : (I (p) = e = I (q))
(I (pr) = I (qr))

where: P is the set of sequences of actions (key-presses
in this case) that can be performed through the device
user interface;I : P $ E is the set of all possible com-
putations performed by the device, whereE is the set
of observable states of the device.

A bisimulation-based approach is used in this work
to specify and verify the above deÞnition of predictabil-
ity. Two models are speciÞed: one model, that we call
the device model, deÞnes the interactive behaviour of
the device; the other model, that we call theprediction
model, deÞnes the userÕs knowledge of the device. The
prediction model used in the analysis encapsulates the
following hypotheses on the userÕs knowledge: (1) the
user makes decisions only on the basis of observable
information provided by the device through its user in-
terface; (2) the user has no memory of past device states
or history of performed actions; (3) the user has a cor-
rect understanding of the functionalities of the device.
Given the prediction and the device model, an equiva-
lence relation is thus established on the observable de-
vice state. If the device model and the prediction model
always match, that is the values of the corresponding
variables in the observable state of the device and pre-
diction models are equal in all the reachable states of
the device, then the device is predictable. The Sym-
bolic Analysis Laboratory SAL [24] is used in section 6
to perform this predictability analysis for the number
entry systems of two commercial drug infusion pumps.

Because of the hypotheses imposed on the predic-
tion model, that model and the device model share sev-
eral behaviours. A procedure for building a prediction
model from a device model is the following.

The initial prediction model is a simpliÞed device
model. The behaviour of this simpliÞed model is ob-
tained from the speciÞcation of the device behaviour
by removing from it all conditions and transitions that
are not observable from the device user interface. For
instance, one of the analysed devices has an auxiliary
memory for enabling undo at boundary cases. If the
value stored in this auxiliary memory used by the de-
vice is not externalised on the device user interface, then
the auxiliary memory is not included in the state of the
prediction model, as well as any transition or condition
based on the value stored in memory.

Iterative model refinement is used for eliminating
mismatches due to oversimpliÞcation of device behaviours
in the initial prediction model. This process makes ex-
plicit the implicit relations between observable state
variables and hidden variables used by the device (e.g.,

4 Paolo Masci et al.

the auxiliary memory used by the device is always clear
when the display shows certain values). To reÞne the
initial prediction model and still maintain the hypothe-
ses on the userÕs knowledge, only conditions over the
current observable device state can be introduced. New
conditions are included in the prediction model until ei-
ther the prediction model and the device model always
match (in this case, the device is predictable), or until a
situation is found where a reÞnement cannot be found
that resolves the mismatch. In this second case, we say
that the device is not predictable.

The simplicity of the procedure described above has
the advantage that it can be easily implement in di!er-
ent languages and veriÞcation tools. A drawback is that
several iterations may be required to reÞne the initial
prediction model. This happens when the user interface
has complex behaviours linked to variables that are not
externalised on the device user interface. As such, the
need of several iterations in itself is a symptom that the
user interface design may need to be revised (even if
predictability succeeds at the end) as the mental model
that users would need to develop is likely to be too
complex. It is worth recalling that the predictability
analysis performed here is performed to help discover
potential problems with interaction design in safety-
critical parts of a user interface, such as the interactive
number entry system of an infusion pump, rather that
the whole user interface behaviour.

When predictability fails, the analysis provides a
means to generate two kinds of recommendations:ver-
ified design solutions that allow to modify the device
user interface behaviour and make it predictable;veri-
fied user strategies that can be easily applied by users
to avoid the area of unpredictability in the design of
the device user interface. The former is useful for de-
vice manufacturers in that it allow to evaluate the con-
sequences of design alternatives that include di!erent
features. The latter is useful for user training, in that
we can check whether a reasonably simple strategy ex-
ists (other than resetting the device) that allows one
to circumvent the predictability issues evidenced in the
analysis.

3.1 Contribution

We show via an example based on commercial devices
how formal methods can help to check whether device
designs are predictable. SpeciÞcally, an accepted deÞ-
nition of predictability is formalised, and a demonstra-
tion is presented of how it can be checked against the
behaviour of the number entry system of two real in-
fusion pumps, the Alaris GP [17] and the B-Braun In-
fusomat Space [4] (current models, 2011). The general

style of these user interfaces is common to many such
devices and so our approach is likely to apply more gen-
erally. The Symbolic Analyser Laboratory (SAL) [24]
model checker is used to verify whether the predictabil-
ity property holds for these device models. When pre-
dictability fails, consideration of failure traces from the
model checking help discover solutions to the identiÞed
problems. These solutions are given either via design
modiÞcations or, if Þxing the design itself is not fea-
sible, through veriÞed user strategies that if followed
mitigate against the problem.

The contributions of this work are therefore: (1) an
approach to verify predictability with automated ver-
iÞcation tools; (2) a demonstration through an ex-
ample that commercial devices can be very e!ectively
analysed for their compliance to predictability; (3) a
demonstration that problems can be precisely identi-
Þedand hence Þxed where this is deemed appropriate
given the trade-o!s involved.

This paper extends our previous work [22] as fol-
lows. We illustrate in detail the complete speciÞcation
of the real number entry systems of the two consid-
ered infusion pumps. In particular, for the Alaris-GP,
we include press & hold interactions where a key is
pressed and held down for a certain amount of time and
then released. We make clear the hypotheses behind the
prediction model and present an approach for gener-
ating the prediction model from the device model. We
present design recommendations for making the system
predictable, and veriÞed user strategies that mitigate
against the lack of predictability of the two analysed
devices.

3.2 Structure of the paper

In section 4, an overview of recent related work about
formal analysis of interactive systems is provided. In
section 5, a formalisation of the interactive number en-
try systems of two commercial drug infusion pumps is
developed. In section 6, predictability is formalised in
higher order logic, and a predictability analysis is per-
formed for the developed speciÞcations. In section 7, a
discussion of why the property fails for both devices is
provided, and possible solutions and recommendations
to avoid predictability issues are illustrated. Conclu-
sions are drawn in section 8.

4 Related work

In this section, we illustrate some recent work that di-
rectly relates to ours.

The benefits of formalising design guidelines: A case study on the predictability of drug infusion pumps 5

Campos and Harrison [9] used Modal Action Logic
(MAL) [33] and the IVY tool [8] to analyse the in-
teractive behaviour of the BBraun and Alaris pumps
considered in this work. Their motivating problem is
procurement of medical devices. They demonstrate the
utility of performing a systematic comparison between
device designs with model checking Ñ subtle design
variations can be systematically identiÞed and evalu-
ated. They use a layered approach to support model
reuse: an ÔinnerÕ layer describes the temporal evolution
of the infusion process; a ÔmiddleÕ layer describes the
mode structure and the information displayed by the
pump; an ÔouterÕ layer describes the normative tasks
typical of the clinicianÕs use of the device. The inner
layer is common to all pumps, while the middle layer
is deviceÐ and design-speciÞc. The outer layer depends
on the expected context of use of the device. A Òbat-
teryÓ of interaction properties is then veriÞed on the
pump model for comparing di!erent designs. Properties
include mode clarity, consistency of actions, and appro-
priate feedback for critical actions. Their work comple-
ments ours in that they focus on device modes and other
interaction properties, such as mode clarity and consis-
tency of functions, while here we focus on predictability
and analyse a detailed speciÞcation of the interaction
design of the number entry system.

Thimbleby and Gimblett [38] discuss the causes of
loss of predictability in interactive user interfaces. In
particular, they argue that one of the main contribut-
ing factors of unpredictability is that manufacturers use
ad hoc number entry methods Ñ apparently identical
user interfaces may therefore have completely di!erent
behaviours. They remark how the problem is particu-
larly evident when considering the way syntax errors are
handled by devices. In order to mitigate the problem,
they developed an approach for implementing depend-
able interactive number entry. Their approach, denom-
inated correct-by-construction user interface, is based
on Þnite state machines. They use regular expressions
for specifying the features of the interface, and then a
compiler for generating the Þnite state machine. They
demonstrate how the approach can be applied for im-
plementing an interface that follows the rules deÞned by
the Institute for Safe Medication Practices (ISMP) [1]
for writing numbers in a safer way (e.g., write 0.5 in-
stead of .5, as the latter may be easily misread as 5).
This work shares with ours the concern that dependable
interactive data entry interfaces should be predictable,
and they aim to tackle the problem at the root, by de-
veloping tools that allow developers to be clear about
their design decisions.

RushbyÕs work on mode confusion [31,6] relates to
our work. He used model checking approaches for com-

paring plausible mental models developed by users and
the actual implementation of the system. He argues
that any strong divergence between mental models and
device models is a potential cause of Òautomation sur-
prisesÓ, i.e., situations where the automated system be-
haves in a way that is di!erent from that expected by
the operator. He proposed a constructive method for de-
riving mental models from the speciÞcation of the inter-
active systems [32], and he applied the approach to the
analysis of an MD-88 autopilot system. He generates
the speciÞcation of a mental model by simplifying the
interactive system speciÞcation through rules reßecting
psychological processes, such as frequential simpliÞca-
tion [19]. Starting from a simple description of the dy-
namics of the aircraft, when a signiÞcant divergence is
found between the abstract model and a pilotÕs mental
model, he reÞnes the model until either the divergence
is discharged or a credible anomalous scenario is found.

Degani and Heymann [11] describe a systematic ap-
proach for evaluating whether a device interface pro-
vides the necessary information. They argue that this is
a necessary precondition for enabling operators to per-
form speciÞed tasks correctly and reliably. They per-
form a systematic comparison between the behaviour
of device user interfaces and mental models of opera-
tors. Such descriptions are both simpliÞed versions of
the deviceÕs behaviour, and they aim to verify that they
are correct with respect to the speciÞcation of the de-
vice when operators perform normative tasks. They use
an approach based on state-machines, where the veri-
Þcation consists in checking that the parallel and syn-
chronised execution of the interface and mental models
consistently match. They show that they are able to
identify situations where operators are unaware that
certain events can take place. They illustrate the ap-
proach by analysing a model of the autopilot system of
a ßight control system.

Our work draws ideas from RushbyÕs and Degani
and HeymannÕs work. In particular, we embrace the
idea that a systematic comparison between mental mod-
els and actual device speciÞcations is an e!ective way of
checking properties of interest on interactive system. In
our work, we systematically compare aprediction model

with the actual interface speciÞcation. The prediction
model is essentially a mental model of an idealised ex-
pert user that knows all functionalities of the device,
but makes decisions only on the basis of the persis-
tent observable state of the device (e.g., what is shown
on the device displays). The argument about using an
idealised expert user is that it allows us to perform a
conservative analysis Ñ if the idealised expert user is
not able to predict the next observable state, neither a
real user could. When the veriÞcation fails, the model

6 Paolo Masci et al.

checker shows a counterexample that provides precise
insights about why predictability failed.

Bolton and Bass [7] used SAL [24] to verify a model
of the Baxter iPump. They verify whether some ba-
sic normative tasks (i.e., sequences of actions described
in written documents, such as user manuals) are prop-
erly supported by the device. Examples of properties
include: turning on and o! the pump, stopping the in-
fusion, and entering a volume to be infused. They devel-
oped a graphical modelling language, denominated En-
hanced Operator Functional Model (EOFM), for spec-
ifying tasks in such a way that non-experts of formal
methods could be able to inspect the speciÞcations and
the traces generated by the model checker. Their pa-
per mainly focuses on the technical lessons learnt when
modelling an interactive drug infusion pump. They il-
lustrate that they had to reduce the model in order to
tackle state space explosion, and argue that the veri-
Þcation approach they have used needs to be revised
if a real system is to be veriÞed. In our work, rather
than considering a simpliÞed model of the pumps, we
focus on a detailed model of the interactive number en-
try system. Although we donÕt explicitly model tasks
and work environment, some aspects of them are cap-
tured implicitly by the interaction design principle we
consider. The veriÞcation approach we used that sys-
tematically compares a prediction model and the speci-
Þcation of the interactive number entry system allowed
us to consider the full range of values, without the need
of speciÞc simpliÞcations.

Kim et al [20] applied a model-based engineering
approach for generating software codes for a prototype
infusion pump from veriÞed speciÞcations. Their work
has been carried out within the Generic Infusion Pump
(GIP) [3] project, whose aim is to develop a set of
generic safety requirements for the software codes exe-
cuted by programmable drug infusion pumps. In their
work, they start from a formal speciÞcation given as
timed automata, then verify safety requirements and,
if the requirements are successfully veriÞed, they au-
tomatically translate the timed automata into C code.
They demonstrate the approach by generating software
codes for a prototype infusion pump. Our work comple-
ments this work in that we focus on predictability of the
interaction design, and our analysis aims also to verify
whether appropriate user strategies can be deÞned for
mitigating deÞciencies in existing pumps designs.

5 Formal speciÞcation of the interactive
number entry systems of two infusion pumps

A detailed speciÞcation of the behaviour of the inter-
active number entry systems of two real medical de-

vices is now developed. The considered devices are the
B-Braun Infusomat Space [4] and the Alaris GP [17]
infusion pumps. These devices were chosen as typical
examples of commercial infusion pumps, though where
di!erent design decisions have been taken in the design
of their number entry systems. Anecdotal evidence sug-
gests similar issues are likely to arise if other makes and
models were analysed.

The actual values displayed by the devices are mod-
elled, as well as the actual action-e!ect relation of in-
teractions through the buttons on the device user inter-
faces. The developed models are state machines. Infor-
mation relevant to the display of the device user inter-
face is modelled as part of the device state, and func-
tionalities of the device user interface are then speci-
Þed using transition functions over device states. The
higher-order logic speciÞcation language of SAL [24] is
used. It is based on typed higher-order logic, and in-
cludes, among other types, function, tuple, and record
type constructors for the deÞnition of new types. The
function type with domain type D and range type R
is denoted [D -> R]. Relevant features of the SAL
speciÞcation language are illustrated further as needed
when presenting the developed speciÞcations.

The speciÞcations were obtained by reverse-enginee-
ring the behaviour of the real devices using interaction
walkthrough [36]. We thus reverse engineered the spec-
iÞcations used below from the user documentation to-
gether with careful manual exploration of the actual
devices, following an iterative methodology until we
had accurate speciÞcations. This approach is poten-
tially error-prone. Our results apply to the speciÞca-
tions as reverse engineered and clearly may not actually
apply to the real devices if there are errors. Neverthe-
less, this is acceptable for the aim of this paper, which
is to demonstrate how veriÞcation tools can be used to
verify interaction properties on real devices. In princi-
ple, formal speciÞcations could have been derived from
the actual software codes of the devices if these were
available, perhaps as provided by the manufacturers.
Thus if adopted by manufacturers this would not be
a limitation in the use of the approach described. In
particular, we are showing that the analysis and the
general approach can help discover potential issues in
the details of the interaction design of devices, and can
help identify how to Þx them. The predictability issues
identiÞed by the analysis performed in section 6 can be
reproduced on the real devices.

In the following, for each of the two considered drug
infusion pumps, a description of the behaviour of the
interactive number entry system is provided, followed
by a detailed illustration of the developed higher-order
logic speciÞcations. In section 6 the predictability of the

The benefits of formalising design guidelines: A case study on the predictability of drug infusion pumps 7

Fig. 1: B-Braun Infusomat Space programmable infu-
sion device.

behaviour described by the developed speciÞcations is
then analysed.

5.1 B-Braun Infusomat Space

The B-Braun Infusomat SpaceÕs number entry system
is an example of Ò5-keysÓ user interfaces [10]: four arrow
keys and a conÞrmation button (see Þgure 1). The up
and down keys increase or decrease the current num-
ber by 10cursor respectively, wherecursor denotes the
cursor position. The left and right arrow keys are used
to change the cursor position. The left key increases
the cursor position and the right key decreases the cur-
sor position. In the developed model, the convention is
used that the cursor is (at position) 0 when it selects
the unit value on the number displayed. The cursor po-
sition ranges from %2 (i.e., cursor on the thousandths
digit) to 4 (i.e., cursor on the ten-thousands digit). The
cursor position is manually selected by the user. This
reßects the capabilities of the real pump user interface.
Initially, the cursor is on the units digit. The device
has an auxiliary memory for restoring the last displayed
value when the action-e!ect of pressing a button causes
the displayed number to overshoot the maximum or the
minimum values handled by the device.

The BBraun pump is capable of handling a range
of infusions that go beyond the display capabilities.
Namely, while the display can show up to Þve digits,
the actual range displayed forms a sliding window be-
tween thousandths and ten-thousands. A non-zero digit
in some position can prevent access to other positions.
The window does not slide uniformly, and there are
in fact three possible ranges:hundredths to tens (e.g.,
99.99), tenths to hundreds (e.g., 999.9), and units to ten-

thousands (e.g., 99999); note that the Þrst two ranges
are four digits wide, whereas the third is Þve wide, so
it is not possible to enter 9999.9, for example. Further-
more, in the hundredths to tens range, the lowest non-
zero value the device allows to be displayed is 0.1, which

is not the lowest syntactically valid value in that range
(i.e., 0.01); values between 0 and 0.1 cannot be entered
or displayed, in fact.

SpeciÞcation. The device behaviour is speciÞed as
a state machine. State transitions correspond to the
action-e!ect of clicking one of the four arrow buttons
on the device user interface: functionsbbraun up and
bbraun down model the e!ect of clicking the up and
down button; the e!ect of clicking the left and right but-
tons is modelled through functionsbbraun left and
bbraun right. When a button is pressed and held
down, the button behaves as in the case of iterative
button clicks.

The state of the device user interface, which is shown
in Listing 1, is a record type (bbraun state) deÞn-
ing the minimal information needed to specify the be-
haviour of the number entry system of the device. Type
bbraun state consists of three Þelds: the current dis-
play value, of typebbraun real, which deÞnes the do-
main of the numbers handled by the device when in rate
mode (bbraun real: TYPE = [0..max display]
wheremax display = 99999); the current cursor po-
sition, of type bbraun cursor; and the current con-
tent of the memory, of type bbraun memory. In the
speciÞcation, we use the constantNA for specifying a
clear memory.

Listing 1: Type definition for the BBraun state

1 bbraun_state: TYPE =
2 [# display: bbraun_real,
3 cursor : bbraun_cursor,
4 memory : bbraun_memory #];

The state machine deÞning the overall behaviour of
the device user interface is given in Listing 2. It is speci-
Þed in SAL with a module that includes the initial state
of the device user interface (in theINITIALIZATION
section), and the state transitions, given as guarded
commands (in theTRANSITION section). The model is
initialised so that the value of the display is0, the cursor
is in the position 0 and the memory is clear. The input
variable event represents button clicks (up, down,
left, right). Each guarded command speciÞes a
state transition that is triggered by the corresponding
event (primed variables represent new values). Thus,
our model bbraun device generates all possible se-
quences of button clicks and the associated changes of
the device state derived from a speciÞc initial state.

Listing 2: State machine for the BBraun

1 bbraun_device : MODULE =
2 BEGIN
3 INPUT event: Event
4 OUTPUT st: bbraun_state

8 Paolo Masci et al.

5 INITIALIZATION st = (# display := 0,
6 cursor := 0,
7 memory := NA #);
8 TRANSITION
9 [event = up --> st’ = bbraun_up(st)

10 [] event = down --> st’ = bbraun_dn(st)
11 [] event = left --> st’ = bbraun_lf(st)
12 [] event = right --> st’ = bbraun_rt(st)
13] END

In the following, a detailed illustration of the de-
veloped transition functions is presented. The functions
model button clicks. In the speciÞcation,pow10 is used
to compute the value of powers of ten to a natural num-
ber (pow10(n) = 10n).

bbraun up This function models the action-e!ect of
clicking the up arrow button. Up button clicks are ig-
nored and the device emits a beep when the number
on the display is already the maximum allowed value
(99999). Otherwise, when the up button is clicked, the
device displays a new value obtained by adding 10cursor

to the value currently displayed (see Listing 3, lines
7Ð15). There are a number of exceptions to this basic
behaviour. First, the precision of the value displayed by
the device after an up button click is as follows: below
100, the precision is of two fractional digits; between 100
and 1000, the precision is limited to one fractional digit;
above 1000, the fractional part is always discarded. The
precision of the digits is obtained with the floor func-
tion (see Listing 3, lines 14Ð15) that discards the frac-
tional part of the number. Second, the actual number
displayed after an up button click depends on the con-
tent of the device memory. Namely, if the device mem-
ory is not empty, then the up button acts like a recall

memory button (see Listing 3, lines 23Ð26).
More precisely, the display value is updated accord-

ing to the following rules when the up button is clicked.
If the current displayed value plus 10cursor overshoots

the maximum value (99999), then the displayed value is
stored in memory and the display gets updated with the
maximum value (Listing 3, lines 17Ð22); for instance,
when the display shows 90010 and the cursor is on the
ten thousands digit, if the up button is clicked then
90010 is stored in memory and the display shows 99999.

If the current displayed value plus 10cursor
does not

overshoot the maximum value, the e!ect of the up but-
ton click depends on the content of the device memory
(Listing 3, lines 23Ð27). If the memory stores a num-
ber, then the up button acts as a recall memory button
(e.g., if the memory contains 100, an up button click
will change the value shown on the display to 100, re-
gardless of the number currently shown on the display);
otherwise, the displayed number is increased by 10cursor

(e.g., when the display is 10 and the cursor is on the

hundreds decimal, if the up button is clicked then the
new displayed value is 110). The memory is cleared in
either case.

Listing 3: BBraun model, up button clicks

1 bbraun_up(st: bbraun_state): bbraun_state =
2 IF display(st) = max_display THEN st
3 ELSE
4 LET val: bbraun_real = display(st),
5 cur: bbraun_cursor = cursor(st),
6 mem: bbraun_memory = memory(st),
7 new_val: real =
8 IF val + pow10(cur) < 0.1 THEN 0.1
9 ELSIF val + pow10(cur) >= 0.1

10 AND val + pow10(cur) < 100
11 THEN val + pow10(cur)
12 ELSIF val + pow10(cur) >= 100
13 AND val + pow10(cur) < 1000
14 THEN floor((val + pow10(cur))*10)/10
15 ELSE floor(val + pow10(cur)) ENDIF
16 IN
17 IF new_val > max_display
18 THEN st WITH .display := max_display,
19 WITH .memory := IF valid?(mem)
20 THEN memory(st)
21 ELSE new_mem(val)
22 ENDIF
23 ELSE st WITH .display := IF valid?(mem)
24 THEN value(mem)
25 ELSE new_val
26 ENDIF,
27 WITH .memory := NA ENDIF ENDIF;

bbraun down This function models the action-e!ect
of clicking the down arrow button. If the number dis-
played by the device is zero, then down button clicks are
ignored. Otherwise, when thedown button is clicked,
the device computes a new value by subtracting 10cursor

to the value currently displayed (see Listing 4, line 10).
As for the up button, there are several exceptions to
this basic behaviour. First, the precision of the value
displayed by the device after a down button click has
the same constraints explained for the up button clicks
(these limits are speciÞed in Listing 4, lines 10Ð18): be-
low 100, the precision is of two fractional digits; be-
tween 100 and 1000, the precision is limited to one
fractional digit; above 1000, the fractional part is al-
ways discarded. Additionally, for the down button, the
device restricts the minimum value that can be entered
according to the cursor position (see Listing 4, lines 7Ð
9). Namely, if the cursor is on the thousands digit, the
minimum value is 1; otherwise, the minimum allowed
value is 0.1. Second, the actual number displayed af-
ter a down button click depends on the content of the
device memory. As for up button clicks, if the device
memory is not empty, then the down button acts like a
recall memory button.

The benefits of formalising design guidelines: A case study on the predictability of drug infusion pumps 9

In more detail, the display value is updated accord-
ing to the following rules when the down button is
clicked.

If either the current display value is the minimum
allowed rate or the current display minus 10cursor is zero
then the display value is updated to zero and the device
memory is cleared (see Listing 4, lines 20Ð22);

If the current display minus 10cursor overshoots the
minimum allowed rate, then the display is updated to
the minimum allowed rate, and the device memory is
either updated with 10cursor or kept unchanged (see List-
ing 4, lines 23Ð28). The device memory is updated with
10cursor when the memory is clear and the cursor is on
an integer digit (e.g., when the display shows 10 and
the cursor is on the thousands digit, if the down but-
ton is clicked then the display will show 0.1 and the
value 1000 is stored in memory); the device memory
is unchanged when the cursor is on a fractional digit
(e.g., when the display shows 0.11 and the cursor is on
the Þrst fractional digit, if the down button is clicked
then the display will show 0.1 and the memory is un-
changed);

If the current display minus 10cursor
does not over-

shoot the minimum allowed rate, the behaviour of the
down button depends on the device memory (see List-
ing 4, lines 29Ð34). If the memory contains a number,
then the down button acts as a recall memory but-
ton (e.g., if the memory contains 910, a down button
click will change the value shown on the display to 910,
regardless of the number currently shown on the dis-
play1); otherwise, the displayed number is decreased
by 10cursor .

Listing 4: BBraun model, down button clicks

1 bbraun_down(st: bbraun_state):bbraun_state =
2 IF display(st) = 0 THEN st
3 ELSE
4 LET val: bbraun_real = display(st),
5 cur: bbraun_cursor = cursor(st),
6 mem: bbraun_memory = memory(st),
7 min_val: bbraun_real =
8 IF cur >= 3 AND val >= 1
9 THEN 1 ELSE 0.1 ENDIF,

10 new_val: real =
11 IF val - pow10(cur) < 0.1 THEN 0
12 ELSIF val - pow10(cur) >= 0.1
13 AND val - pow10(cur) < 100
14 THEN val - pow10(cur)
15 ELSIF val - pow10(cur) >= 100
16 AND val - pow10(cur) < 1000
17 THEN floor((val - pow10(cur))*10)/10
18 ELSE floor(val - pow10(cur)) ENDIF
19 IN
20 IF val = min_val OR new_val = 0

1 Due to the constraints imposed by the functionalities of
the other buttons, the down button may act as recall memory
only when the display shows 99999.

21 THEN st WITH .display := 0
22 WITH .memory := NA
23 ELSIF new_val < min_val
24 THEN st WITH .display := min_val,
25 WITH .memory :=
26 IF cur >= 0
27 THEN new_mem(pow10(cur))
28 ELSE mem ENDIF
29 ELSE st WITH .display :=
30 IF valid?(mem)
31 THEN value(mem)
32 ELSE min_infuse(min_val)
33 (new_val) ENDIF,
34 WITH .memory := NA ENDIF ENDIF;

bbraun left This function (shown in Listing 5) mod-
els the e!ect of clicking the left arrow key button. If the
cursor is on the ten-thousands digit, left button clicks
are ignored (the maximum rate that can be entered is
99999). If the cursor position is not on the most signif-
icant (integer) digit, then left button clicks move the
cursor left one position and clear the device memory.

Listing 5: BBraun model, left button clicks

1 bbraun_left(st: bbraun_state):bbraun_state =
2 IF cursor(st) = 4 THEN st
3 ELSE st WITH .cursor := cursor(st) + 1
4 WITH .memory := NA ENDIF;

bbraun right This function (shown in Listing 6) mod-
els the e!ect of clicking the right arrow key button. The
behaviour of the right button depends on the value cur-
rently displayed by the device. Namely, the device ig-
nores right button clicks when the operation would hide
non-zero digits at the left-most position of the display,
that is either when the displayed value is above 1000
and the cursor position is on the units, or when the
displayed value is between 100 and 1000 and the cursor
position is on the Þrst decimal digit. The device ignores
right button clicks also when the cursor is on the second
decimal digit (the maximum precision of the device is
limited to two decimal digits). In all other cases, right
button clicks move the cursor right one position and
clear the device memory.

Listing 6: BBraun model, right button clicks

1 bbraun_right(st: bbraun_state):bbraun_state=
2 IF (display(st) >= 1000 AND cursor(st) = 0)
3 OR (display(st)>=100 AND display(st)<1000
4 AND cursor(st) = -1) OR (cursor(st) <= -2)
5 THEN st
6 ELSE st WITH .cursor := cursor(st) - 1
7 WITH .memory := NA ENDIF;

10 Paolo Masci et al.

Fig. 2: Alaris GP programmable infusion device.

5.2 Alaris GP

The number entry system of the user interface on the
Alaris GP has four buttons (see Figure 2). A pair of
buttons is used to increase the value displayed and a
second pair is used to decrease the value displayed. In
each pair of buttons, one causes a change ten times big-
ger than the change caused by the other button. Typi-
cally, clicking either single chevron (arrow) key changes
the last digit of the value displayed, and clicking either
double chevron key changes the second to last digit of
the value displayed. In this device, when a chevron but-
ton is pressed & held down, the display value is itera-
tively changed, and the device dynamically selectsstep
multipliers to scale the amount by which the displayed
number is increased or decreased. One multiplier leads
to changes that are ten times larger than the other mul-
tiplier. The step multipliers are automatically selected
by the device during the interaction. The selection de-
pends on the value currently displayed by the device
and on the amount of time a button has been held down
by the user.

SpeciÞcation. The behaviour of the Alaris pump is
speciÞed as a state machine. Di!erently from the BBraun
model, here state transitions correspond to the action-
e!ect of button clicks (i.e., a key is pressed and released
immediately), and button press & hold (i.e., a key is
pressed& held down for a certain amount of time, and
then released). A convenient way to specify these be-

haviours is by splitting the deÞnition of each keyk into
a pair of functions, one modelling the action of pressing
(these functions will be namedalaris press k in the
model) and the action of releasing (alaris release k
in the model) the button.

The device state, is a record type (alaris state)
deÞning the minimal information needed to specify the
behaviour of the number entry system of the device.
Type alaris state, as shown in Listing 7, consists
of three Þelds:display, which models the current dis-
play value; timer, a discrete timer with resolution of
seconds whose value is used to model the amount of
time a button is held down; multiplier, which mod-
els the step multiplier used by the interactive number
entry system of the device. The display value is of type
alaris real, a bounded real number that models the
actual domain handled by the device when in rate mode
(alaris real:TYPE = [0..max rate], where the
maximum rate max rate is 1200). The discrete timer
is of type alaris timer, a natural number below
max timer (5, in this case). The multiplier can be ei-
ther small or large: the small multiplier is the constant
1 (the symbolic namex1 will be used in the model for
this constant), the large multiplier is 10 (the symbolic
namex10 will be used in the model for this constant).
Initially, the display shows the number 0, the multiplier
is x1, and the timer is 5.

Listing 7: Type definition of the alaris state

1 alaris_state: TYPE =
2 [# display : alaris_real,
3 timer : alaris_timer,
4 multiplier: alaris_multiplier #];

The state machine deÞning the overall behaviour of
the device is in Listing 8. The transition system is ini-
tialised so that the value displayed is0, the initial timer
is max timer and the step multiplier is x1. The in-
put variable event represents key presses (press up,
press down, press UP, press DOWN) and key re-
leases (release key). At each step, event can take
any of theses values, thus modelling arbitrary key se-
quences. The output variablest represents the pump
state. Each guarded command speciÞes a state transi-
tion that is triggered by the corresponding event (primed
variables represent new values).

Listing 8: State machine for the Alaris

1 alaris_device : MODULE =
2 BEGIN
3 INPUT event: Event
4 OUTPUT st: alaris_state
5 INITIALIZATION
6 st = (# display := 0,
7 timer := max_timer,

The benefits of formalising design guidelines: A case study on the predictability of drug infusion pumps 11

8 multiplier := x1 #);
9 TRANSITION

10 [event = release_key
11 --> st’ = alaris_release_key(st);
12 [] event = press_up
13 --> st’ = alaris_press_up(st);
14 [] event = press_down
15 --> st’ = alaris_press_down(st);
16 [] event = press_UP
17 --> st’ = alaris_press_UP(st);
18 [] event = press_DOWN
19 --> st’ = alaris_press_DOWN(st)] END

The model generates all possible sequences of key
press and key release and the associated changes of the
device state derived from a speciÞc initial state. For a
correct deÞnition of the transition system, we need to
consider key press and release sequences such that no
two keys are being pressed at the same time Ñ the
real device enforces this constraint by ignoring subse-
quent key presses until the Þrst key has been released.
For that to be the case, a key release event must pre-
cede any press of a di!erent key in our model. This
constraint can be imposed through anobserver mod-
ule that encapsulates the constraints and allows only
legal press-release sequences. The observer module is
shown in Listing 9. In the module, the output variable
prev event represents the previous event (either press
or release) and the output variableok is true only for
legal sequences. The observer is thus composed to the
device model for enforcing these constraints (this will
be done when creating the Alaris system model for the
predictability analysis, in section 6.3).

Listing 9: Alaris observer module

1 alaris_constraint : MODULE =
2 BEGIN
3 INPUT event: Event
4 OUTPUT prev_event: Event
5 OUTPUT ok: boolean
6 INITIALIZATION
7 ok = true; prev_event = release;
8 TRANSITION
9 [ok AND event /= prev_event -->

10 ok’ = (event = release
11 XOR prev_event = release);
12 prev_event’ = event
13 [] ELSE -->] END

In the following, the transition functions for key
presses and key releases are illustrated in detail. In the
speciÞcation functiontrim is used to enforce the range
limits imposed by the real device when inrate mode.
Namely, trim(x) returns x if 0 & x & max rate,
otherwise the function returns either 0 (if x < 0) or
max rate (if x > max rate).

alaris press up This function (shown in Listing 10)
models the action-e!ect of pressing theslow up chevron

key, which increases the number shown on the display
of the device according to the following rules:

Ð if the number on the display is below one hundred,
then the fractional part of the number is increased
to the next decimal (see Listing 10, lines 5Ð6); for
instance, if the display shows 9.1 and the small in-
crease button is clicked, the display becomes 9.2;

Ð if the number is between one hundred and one thou-
sand, then the unit digit of the number is increased
to the next unit digit (see Listing 10, lines 7Ð9);
for instance, if the display shows 123 and the small
increase button is clicked, the display becomes 124);

Ð if the number is above one thousand, then the tens
digit of the number is increased to the next tens
digit (see Listing 10, lines 10Ð11); for instance, if the
display shows 1080 and the small increase button is
clicked, the display becomes 1090).

When pressed& held down, the slow up button it-
eratively executes button clicks. The step multiplier is
always x1 when interacting with this button.

Listing 10: Alaris model, slow up button presses

1 alaris_press_up(st: alaris_state)
2 : alaris_state =
3 LET m: alaris_multiplier = x1,
4 d: alaris_real =
5 IF display(st) < 100
6 THEN trim(floor((display(st)*10)+m) / 10)
7 ELSIF display(st) >= 100
8 AND display(st) < 1000
9 THEN trim(floor((display(st)) + m))

10 ELSE trim((floor(display(st)/10)+m)
11 * 10) ENDIF
12 IN st WITH .display := d;

alaris press UP This function (shown in Listing 11)
models the action-e!ect of pressing thefast up chevron
key, which increases the number shown on the display of
the device. The increase is larger than that of the slow
up key, and depends on the value of a step multiplier
that is automatically selected by the device depend-
ing on the interaction. If the fast up button is pressed
& held down for more than Þve consecutive display
changes, then the multiplier changes from small (x1)
to large (x10) either when the displayed number is be-
low one hundred and a multiple of ten, or when the
display is a multiple of one hundred. The discrete timer
included in the alaris state is used to support mod-
elling this behaviour. When the fast up button is clicked
(instead of press& hold actions) the multiplier never
changes. In the following, the action-e!ect of pressing
the fast up key when a given step multiplier is selected
by the device is explained in detail.

When the selected step multiplier isx1 (i.e., when
the fast up button is either clicked or pressed& held

12 Paolo Masci et al.

down at most Þve consecutive display changes), the
number on the display is modiÞed according to the fol-
lowing rules (as shown in Listing 11, lines 16Ð23; the
multiplier is s = 1 in this case):

Ð if the number on the display is below one hundred,
then the number is increased to the next unit digit
(see Listing 11, lines 16Ð17); for instance, if the
display shows 9.1 and the big increase button is
pressed, the display becomes 10;

Ð if the number is between one hundred and one thou-
sand, then the tens digit of the number is increased
to the next tens digit (see Listing 11, lines 18Ð21);
for instance, if the display shows 123 and the big
increase button is pressed, the display becomes 130;

Ð if the number is above one thousand, then the hun-
dreds digit of the number is increased to the next
hundreds digit (see Listing 11, lines 22Ð23); for in-
stance, if the display shows 1080 and the big increase
button is pressed, the display becomes 1100

When the selected step multiplier isx10 (i.e., when
the fast up button is pressed& held down for more than
Þve consecutive display changes), the number on the
display is modiÞed as follows (as shown in Listing 11,
lines 16Ð23; the multiplier iss = 10 in this case):

Ð if the number on the display is below one hundred,
then the number is increased by tens (see Listing 11,
lines 16Ð17); for instance, if the display shows 30 and
the big increase button is pressed, then the display
becomes 40;

Ð if the displayed number is between one hundred and
one thousand, then the number is increased by hun-
dreds (see Listing 11, lines 18Ð21); for instance, if
the display shows 300 and the big increase button
is pressed, then the display becomes 400;

Ð if the displayed number is above one thousand, the
number can be incremented by thousands (see List-
ing 11, lines 22Ð23); due to limits imposed on infu-
sion rates, this type of increment is actually disabled
on the real device.

For the analysed Alaris model, an additional con-
straint on the behaviour of the pump user interface is
that the x10 multiplier can be selected by the device
only on numbers that are either a multiple of ten (when
the display value is below 100) or a multiple of one
hundred (when the display value is above 100). This is
reßected in the conditions at lines 9Ð12 in the speciÞ-
cation shown in Listing 11.

Listing 11: Alaris model, fast up button presses

1 alaris_press_UP(st: alaris_state)
2 : alaris_state =

3 LET t: alaris_timer =
4 IF timer(st) - 1 >= 0
5 THEN timer(st) - 1
6 ELSE timer(st) ENDIF,
7 s: alaris_multiplier =
8 IF t = 0 AND multiplier(st) = x1
9 AND ((display(st) < 100

10 AND fractional(display(st),10) = 0)
11 OR (display(st) > 100
12 AND fractional(display(st),100)=0))
13 THEN x10
14 ELSE multiplier(st) ENDIF,
15 d: alaris_real =
16 IF display(st) < 100
17 THEN trim(floor(display(st))+s)
18 ELSIF display(st) >= 100
19 AND display(st) < 1000
20 THEN trim((floor(display(st)/10)+s)
21 * 10)
22 ELSE trim((floor(display(st)/100)+s)
23 * 100) ENDIF
24 IN (# display := d,
25 timer := t,
26 multiplier := s #);

alaris press dn This function models the action-e!ect
of pressing theslow down chevron key. The function de-
creases the number shown on the display of the device
according to rules that are almost symmetric to those
of the slow up chevron:

Ð if the number on the display is below one hundred,
then the fractional part of the number is decreased
to the next decimal (see Listing 12, lines 5Ð6); for
instance, if the display shows 9.1 and the small de-
crease button is pressed, the display becomes 9;

Ð if the number is between one hundred and one thou-
sand, then the unit digit of the number is decreased
to the next unit digit (see Listing 12, lines 7Ð9); for
instance, if the display shows 123 and the small de-
crease button is pressed, the display becomes 122;

Ð if the number is above one thousand, then the tens
digit of the number is decreased to the next tens
digit (see Listing 12, lines 10Ð11); for instance, if the
display shows 1080 and the small decrease button is
pressed, the display becomes 1070.

When pressed& held down, the slow down button
iteratively executes button clicks. The step multiplier
is alwaysx1 when interacting with this button.

Listing 12: Alaris model, slow down button presses

1 alaris_press_down(st: alaris_state)
2 : alaris_state =
3 LET m: alaris_multiplier = x1,
4 d: alaris_real =
5 IF display(st) < 100
6 THEN trim((ceil(display(st)*10)-m) / 10)
7 ELSIF display(st) >= 100
8 AND display(st)<1000

The benefits of formalising design guidelines: A case study on the predictability of drug infusion pumps 13

9 THEN trim(ceil(display(st)-m))
10 ELSE trim((ceil(display(st)/10)-m)
11 * 10) ENDIF
12 IN st WITH .display := d;

alaris press DOWN The function models the action-
e!ect of pressing the fast down chevron key, which de-
creases the number shown on the display. Similarly to
the fast up key, the actual decrease depends on a step
multiplier, which is automatically selected by the device
as the button is pressed& held down. The multiplier is
automatically changed from small (x1) to large (x10)
either when the displayed number is below one hundred
and a multiple of ten, or when the display is a multiple
of one hundred. In the following, a detailed illustration
of the action-e!ect of pressing the fast down key when
a given step multiplier is selected by the device is pre-
sented.

When the selected step multiplier isx1 (i.e., when
the fast down button is either clicked or pressed& held
down up to Þve consecutive display changes), the func-
tion decreases the number shown on the display of the
device according to the following rules (as shown in
Listing 13, lines 21Ð28; the multiplier iss = 1):

Ð if the number on the display is below one hundred,
then the fractional part of the number is decreased
to the next unit digit (see Listing 13, lines 21Ð22);
for instance, if the display shows 9.1 and the big
decrease button is pressed, the display becomes 9;

Ð if the number is between one hundred and one thou-
sand, then the tens digit of the number is decreased
to the next tens digit (see Listing 13, lines 23Ð26);
for instance, if the display shows 123 and the big de-
crease button is pressed, the display becomes 120;

Ð if the number is above one thousand, then the hun-
dreds digit of the number is decreased to the next
hundreds digit (see Listing 13, lines 27Ð28); for in-
stance, if the display shows 1080 and the big de-
crease button is pressed, the display becomes 1000.

When the selected step multiplier isx10 (i.e., when
the fast down button is pressed& held down more than
Þve consecutive display changes), the number on the
display is modiÞed as follows (as shown in Listing 13,
lines 21Ð28; the multiplier iss = 10):

Ð if the number on the display is below one hundred,
then the number is decreased by tens (see Listing 13,
lines 21Ð22); for instance, if the display shows 30 and
the big decrease button is pressed, then the display
becomes 20;

Ð if the displayed number is between one hundred and
one hundred, then the number is decreased by hun-
dreds (see Listing 13, lines 23Ð26); for instance, if

the display shows 300 and the big decrease button
is pressed, then the display becomes 200.

Ð if the displayed number is above one thousand, the
number can be decremented by thousands (see List-
ing 11, lines 27Ð28); due to limits imposed on infu-
sion rates, this type of increment is actually disabled
on the real device.

Listing 13: Alaris model, fast down button presses

1 alaris_press_DOWN(st: alaris_state)
2 : alaris_state =
3 LET t: alaris_timer =
4 IF timer(st) - 1 >= 0
5 THEN timer(st) - 1
6 ELSE timer(st) ENDIF,
7 s: alaris_multiplier =
8 IF t = 0 AND multiplier(st) = x1
9 AND ((display(st) > 10

10 AND display(st) < 100
11 AND fractional(display(st),10) = 0)
12 OR (display(st) > 100
13 AND fractional(display(st),100)=0))
14 THEN x10
15 ELSIF t = 0 AND multiplier(st) = x10
16 AND (display(st) = 10
17 OR display(st) = 100)
18 THEN x1
19 ELSE multiplier(st) ENDIF,
20 d: alaris_real =
21 IF display(st) < 100
22 THEN trim(ceil(display(st)) - s)
23 ELSIF display(st) >= 100
24 AND display(st) < 1000
25 THEN trim((ceil(display(st)/10)-s)
26 * 10)
27 ELSE trim((ceil(display(st)/100)-s)
28 * 100) ENDIF
29 IN (# display := d,
30 timer := t,
31 multiplier := s #);

alaris release key In the considered Alaris pump,
the action-e!ect of releasing a button is identical for all
buttons. A single function is therefore used to model the
e!ect of releasing any chevron key: the displayed value
is left unchanged and the timer is reset to its initial
value (max timer). The higher order logic speciÞcation
is in Listing 14.

Listing 14: Alaris model, release key

1 alaris_release_key(st: alaris_state):
2 alaris_state =
3 st WITH .timer := max_timer
4 .WITH multiplier := x1;

14 Paolo Masci et al.

6 Analysis

The considered deÞnition of predictability concerns whe-
ther it is possible to tell what state the number entry
system of the device is in from the current state exter-
nalised by the device through the user interface. The
number entry system of the device is not predictable if
there is more than one possible state the device could
move to as a result of some action when decisions are
taken solely on the basis of the current observable state.

This form of predictability has been formalised in[14,
13] through the Program-Interpretation-E!ect (PIE)
framework [14,15], which describes interactive systems
in terms of sequence of commands issued by users (de-
nominated programs), device states perceived by the
users (denominatede↵ects), and relations between com-
mand sequences and their e!ects on perceived device
states (denominatedinterpretations). Following the no-
tation of the PIE framework, predictability is deÞned
as follows:

predictable(e) ! ! p, q, r " P : (I (p) = e = I (q))
(I (pr) = I (qr))

where:P is the set of sequences of key-presses that can
be performed on the device user interface;I : P $ E is
the set of all possible computations performed by the
device, whereE is the set of observable states of the
device.

A bisimulation-based approach is used to analyse
predictability. A model, hereafter called the prediction

model, that encapsulates the userÕs knowledge of the de-
vice according to considered deÞnition of predictability
is deÞned. An equivalence relation is thus established
between the observable device states speciÞed in the
prediction model and in the device models. If the two
models alwaysmatch, that is the values of the corre-
sponding variables in the device and prediction models
are equal in all the reachable states of the device, then
the (number entry system of the) device is predictable.

In the following, an approach is presented for deriv-
ing a prediction model from a device model.

6.1 Prediction model

The prediction model is a deterministic model that de-
scribes the behaviour of the system on the basis of in-
formation resources externalised by the device through
its user interface (e.g., visible and audible cues). The
prediction model can be assimilated to a mental model
(i.e., a representation of the usersÕ understanding of
the system behaviour) of an idealised expert user that
knows the functionalities of the device perfectly but

makes decisions only on the basis of the current ob-
servable state. The concern with an idealised expert
user means that, if predictability fails, any user equal
or less experienced than the ideal (that is, any normal
human user) will certainly be unable to predict the next
state Ñ thus the deÞnition is conservative.

The prediction model encapsulates the following hy-
potheses about the userÕs knowledge: (1) the user makes
decisions only on the basis of observable information
provided by the device through its user interface; (2)
the user has no memory of past device states or his-
tory of performed actions; (3) the user has a correct
understanding of the functionalities of the device.

The prediction model and the device model share
several behaviours. A procedure for building the pre-
diction model from a device model follows.

The initial prediction model is a simpliÞed device
model. The behaviour if this simpliÞed model is ob-
tained from the speciÞcation of the device behaviour
by removing from it all behaviours that are not observ-
able from the device user interface. For the deÞnition
of predictability considered here, the observable state
includes only the persistent state of the devices: the
display value for the Alaris GP; the display value and
the cursor position for the BBraun Infusomat Space.
For these devices, therefore, transition functions in the
prediction model are deÞned on the basis of information
on the displays. They are obtained from the transition
functions of the device by discarding all e!ects and all
conditions over resources other than those included in
the observable state.

Iterative model refinement is performed for eliminat-
ing mismatches due to oversimpliÞcation of the device
behaviour in the initial prediction model. In some situ-
ations, discarding all conditions over hidden resources
may lead to false positive, as the conditions discarded
could have been replaced by additional conditions over
the current observable state. Because of the hypothe-
ses encapsulated in the prediction model, new condi-
tions can be added that use only the current observable
state of the device. For the considered devices, new be-
haviours added in the reÞnement steps are therefore
still based on information reported on the device dis-
plays only. New conditions are included in the predic-
tion model until either the prediction model and the
device model always match (in this case, the device is
predictable), or until a situation is found where a re-
Þnement cannot be found that resolves the mismatch.
In this second case, we say that the device isnot pre-
dictable.

Any divergence between the two models corresponds
to a situation where two observationally equivalent de-
vice states lead to di!erent observational states (when

The benefits of formalising design guidelines: A case study on the predictability of drug infusion pumps 15

hidden state variables are not considered). That is a
transition from two states that are identical when com-
paring just observable information resources leads to
two states with di!erent observable information. This
corresponds to situations where the system given by
the parallel composition of the prediction model and
the device model has non-deterministic behaviour. Dix
calls ambiguous these states causing non-deterministic
behaviour in the composed system model, because more
than one observable state can be mapped to them [13].
The set of ambiguous states deÞne the areas of unpre-
dictability of the device. In order to identify precisely
the areas of unpredictability, a systematic exploration
of the state space of the composed system is required.
In the following section, the SAL model checker is used
for this purpose.

Before proceeding with the veriÞcation in SAL, it
is worth noting that the approach for building the pre-
diction model can be easily implemented in di!erent
languages and veriÞcation tools. A drawback of the ap-
proach is that several iterations may be required to re-
Þne the initial prediction model. This typically happens
when the user interface has complex behaviours linked
to hidden state variables. The need of several iterations
is therefore a symptom that the user interface behaviour
may need to be revised in any case (even if predictabil-
ity succeeds at the end), as the mental model that users
would need to develop is likely to be too complex. We
recall that the predictability analysis performed here
is performed to help discover potential problems with
interaction design in safety-critical parts of a user in-
terface, such as the interactive number entry system of
an infusion pump, rather that the whole user interface
behaviour.

It is also worth noting that the procedure that re-
Þnes the initial prediction model is essentially discov-
ering invariants of the model (i.e., relations that al-
ways holds on all reachable states) between the val-
ues of Þelds in the observable state and the values of
Þelds in the hidden state. All these invariants could have
been found through static analysis of the speciÞcation
of the device model rather than through iterative re-
Þnement. We have chosen the iterative procedure as it
keeps the approach simple. Counterexamples generated
by the model-checker are used as the basis for iden-
tifying the invariant Ñ we will demonstrate how this
can be done during the analysis of the Alaris pump in
section 6.3.

6.2 VeriÞcation of the B-Braun number entry system

We describe here the analysis we carried out on the
BBraun number entry model. The Þrst step is to spec-

ifying the prediction model as a reduced version of the
device model. To this aim, a new type is deÞned that
models information resources in the observable device
state (bbraun observable state, see Listing 15).
For the BBraun, the observable state contains two Þelds:
display of type bbraun real and cursor of type
bbraun cursor.

Listing 15: Observable state of the BBraun

1 bbraun_observable_state: TYPE =
2 [# display: bbraun_real,
3 cursor : bbraun_cursor #];

The action-e!ect of button clicks are then deÞned as
transition functions over observable states. The speciÞ-
cation of the prediction model is obtained by discard-
ing all predicates over resources other than the observ-
able state (which is given by the display value and the
cursor position for the BBraun), and all e!ects on re-
sources other than those of the observable state. For
the BBraun, predicates and e!ects on device memory
are therefore removed.

The state machine of the prediction model is shown
in Listing 16. Similarly to the device model, the overall
behaviour of the prediction model is speciÞed in SAL
with a module, which deÞnes the initial state of the
prediction model (in the INITIALIZATION section),
and the transitions, given as guarded commands. The
initial state of the prediction module initially matches
that of the device model. The input variable event
represents button clicks, the input variable st is used
to determine the current values of the display and cur-
sor, and the output variable predicted represents the
expected display value and cursor position as a result
of button clicks according to the prediction model.

Listing 16: Prediction model for the BBraun

1 bbraun_prediction : MODULE =
2 BEGIN
3 INPUT event: Event, st: bbraun_state
4 OUTPUT predicted: bbraun_observable_state
5 INITIALIZATION
6 predicted = (# display := display(st),
7 cursor := cursor(st) #);
8 TRANSITION
9 [event = up -->

10 predicted’=prediction_up(
11 (# display := display(st),
12 cursor := cursor(st) #))
13 [] event = down -->
14 predicted’=prediction_down(
15 (# display := display(st),
16 cursor := cursor(st) #))
17 [] event = left -->
18 predicted’=prediction_left(
19 (# display := display(st),
20 cursor := cursor(st) #))
21 [] event = right -->

16 Paolo Masci et al.

22 predicted’=prediction_right(
23 (# display := display(st),
24 cursor := cursor(st) #))
25] END

The speciÞcation of transition functions modelling
up, down, left, and right button clicks is thus developed
from the corresponding functions of the device model.
As explained in section 6.1, conditions on state vari-
ables that are not part of the observable state are re-
moved. The speciÞcation ofprediction up is shown
in Listing 17. The speciÞcation of the other transition
functions for the prediction model are omitted as they
are obtained in a similar way.

Listing 17: Prediction model, up button clicks

1 prediction_up(st: bbraun_observable_state):
2 bbraun_observable_state =
3 IF display(st) = max_display THEN st
4 ELSE
5 LET val: bbraun_real = display(st),
6 cur: bbraun_cursor = cursor(st)
7 new_val: real =
8 IF val + pow10(cur) < 0.1 THEN 0.1
9 ELSIF val + pow10(cur) >= 0.1

10 AND val + pow10(cur) < 100
11 THEN val + pow10(cur)
12 ELSIF val + pow10(cur) >= 100
13 AND val + pow10(cur) < 1000
14 THEN floor((val + pow10(cur))*10)/10
15 ELSE floor(val + pow10(cur)) ENDIF
16 IN
17 IF new_val > max_display
18 THEN st WITH .display := max_display
19 ELSE st WITH .display := new_val ENDIF;

From the speciÞcation above it can be noted that
the calculation of predicted is based solely on the
display value and the cursor position. When the calcu-
lation performed by the device model only uses infor-
mation from the observable state, the logic behind the
calculation in the prediction model is identical to that
of the device model. That is, it is done according to the
same rules as speciÞed by the transition functions of
the device model. This captures the hypothesis encap-
sulated in the deÞnition of predictability that the user
has a complete and correct understanding of the func-
tionalities of the device but decisions are made only on
the basis of the current observable device state.

Now, predictability can be checked by verifying that
the device model and the prediction model match in all
reachable states with respect to the observable state.
The parallel composition of the two models generates
all reachable states. In SAL, this can be done by spec-
ifying a composed module,bbraun system, given by
the synchronous composition ofbbraun device and
bbraun prediction. The speciÞcation of the com-

posed system is then given in Listing 18 (the parallel
composition is the symbol||).

Listing 18: BBraun system model

1 bbraun_system:
2 MODULE = bbraun_device || bbraun_prediction;

The predictability property can be then speciÞed
as a Linear Temporal Logic (LTL) property over all
states reached by the composed system module. The
veriÞcation checks that all reachable states have the
same value for the observable components of the two
models (predicted of the prediction model and the pair
(display(st), cursor(st)) of the device model).

Listing 19: Predictability for the BBraun

1 bbraun_predictable:
2 CLAIM bbraun_system |-
3 G (predicted =
4 (# display := display(st),
5 cursor := cursor(st) #));

The veriÞcation of this property with SAL produces
a counterexample whendisplay(st) = 10. Namely, start-
ing from the initial state when the display is 0, the
cursor is at position 0, and the memory is empty, the
sequence of button clicksup, left, down, up produces
the following state changes:

Ð on the device model : starting from 0, the up but-
ton click increments the number on the display by
1; then, by clicking the left button, the cursor high-
lights the tens digit (the display is still 1); by clicking
the down button, the device overshoots the mini-
mum value (1 % 10 < 0), thus the display shows
a default minimum value (0.1) and stores 10 (i.e.,
pow10(cursor)) in memory; Þnally, by clicking the
up button, the button click recalls and clears the
memory, thus the display shows 10.

Ð on the prediction model : starting from 0, by clicking
the up button, the device displays goes to 1; the
left button click moves the cursor to the tens digit.
Then, the down button click causes an overshoot of
the minimum value (1 % 10 is a negative number),
and the device displays the minimum default value
(0.1). At this point, the cursor is still selecting the
tens digit, and the display shows 0.1. If the decision
is based on this information only, aup button click
produces 10.1 (10 + 0.1)

6.3 VeriÞcation of the Alaris number entry system

We describe here the analysis carried out on the Alaris
number entry model. ReÞnement is needed for the ver-
iÞcation of the Alaris pump.

The benefits of formalising design guidelines: A case study on the predictability of drug infusion pumps 17

As for the veriÞcation of the other device, the Þrst
step is again to specifying the prediction model. The
observable state (shown in Listing 20) is deÞned by
a new type, alaris observable state, which in-
cludes only the value shown on the display in this case.

Listing 20: Observable state of the Alaris

1 alaris_observable_state: TYPE = alaris_real;

The action-e!ect of key presses are speciÞed as tran-
sition functions over observable states. All predicates
and all e!ects over step multipliers and timers are dis-
carded in this case, as they are not externalised on
the device user interface. The transition system of the
Alaris prediction model (shown in Listing 21) is a state
machine with an initialisation that copies the corre-
sponding initial values of the device model, and a set
of transition functions modelling the prediction for the
press and release actions.

Listing 21: Prediction model for the Alaris

1 alaris_prediction : MODULE =
2 BEGIN
3 INPUT
4 event: Event; st: alaris_state;
5 OUTPUT
6 predicted: alaris_observable_state;
7 INITIALIZATION
8 predicted = display(st);
9 TRANSITION

10 [event = press_UP -->
11 predicted’ =
12 prediction_press_UP(display(st))
13 [] event = press_DOWN -->
14 predicted’ =
15 prediction_press_DOWN(display(st))
16 [] event = press_up -->
17 predicted’ =
18 prediction_press_up(display(st))
19 [] event = press_down -->
20 predicted’ =
21 prediction_press_down(display(st))
22 [] event = release_key -->
23 predicted’ =
24 prediction_release_key(display(st))
25]
26 END

The speciÞcation of the transition functions is thus
generated from the corresponding function of the device
model. The speciÞcation ofprediction press UP is
shown in Listing 22. It can be noted that the step mul-
tiplier is considered in the computation but its value
is derived solely from the current observable display
value. The speciÞcation of this transition function will
be used throughout the rest of this section in the veriÞ-
cation example. The speciÞcation of the other transition
functions is omitted.

Listing 22: Prediction model, fast up button presses

1 prediction_press_UP
2 (val: alaris_observable_state)
3 : alaris_observable_state =
4 LET s: alaris_multiplier =
5 IF (display(st) < 100
6 AND fractional(display(st),10) = 0)
7 OR (display(st) > 100
8 AND fractional(display(st),100) = 0)
9 THEN x10 ELSE x1 ENDIF

10 IN
11 IF display(st) < 100
12 THEN trim(floor(display(st))+s)
13 ELSIF display(st) >= 100
14 AND display(st) < 1000
15 THEN trim((floor(display(st)/10)+s)
16 * 10)
17 ELSE trim((floor(display(st)/100)+s)
18 * 100) ENDIF

The speciÞcation of the whole system is the module
composition (as shown in Listing 23, lines 1Ð3, where
alaris constraint is the observer module illustrat-
ed in section 5.2 that enforces legal keypress sequences).
The predictability condition is formulated as a LTL for-
mula (as shown in Listing 23, lines 4Ð6) that checks the
behaviour of the Alaris number entry system for all
keypress sequences.

Listing 23: Alaris, system model & predictability

1 alaris_system: MODULE =
2 alaris_constraint || alaris_device
3 || alaris_prediction;
4 alaris_predictable: CLAIM
5 alaris_system
6 |- G (ok => (display(st)=predicted));

When verifying the predictability property with the
above speciÞcation, the model checker immediately Þnds
a counterexample after the initial state: the prediction
model expects the display to show 10 (the step multi-
plier is x10 according to the conditions in the press up
function in the prediction model), while the display in
the device model is actually 1 (the step multiplier isx1
according to the press up function in the device model).
This counterexample is an artefact of the model, and it
is discharged by adding a condition when the display is
zero Ñ when the display is zero, the step multiplier is
x1 (see Listing 24, line 5).

Listing 24: Prediction model, first refinement

1 prediction_press_UP
2 (val: alaris_observable_state)
3 : alaris_observable_state =
4 LET s: alaris_multiplier =
5 IF display(st) = 0 THEN x1 % 1st refinement
6 ELSIF (display(st) < 100
7 AND fractional(display(st),10) = 0)

18 Paolo Masci et al.

8 OR (display(st) > 100
9 AND fractional(display(st),100) = 0)

10 THEN x10 ELSE x1 ENDIF
11 IN ...

When performing a subsequent new veriÞcation with
the reÞned prediction model, SAL identiÞes another
counter example at a di!erent observable state. The
new counter example generated shows that, when the
device is in a state wheredisplay(st) = 10, multiplier(st)

= x1, and timer(st) = 5, if the fast up button is clicked
(i.e., the sequencepress UP, release key is performed in
the model), then the device display becomes 11, while
the prediction model expects 20. This counterexample
is discharged by adding a relation between the display
value and the multiplier: when the display is 10 then
the step multiplier is x1 (see Listing 25, line 5).

Listing 25: Prediction model, second refinement

1 prediction_press_UP
2 (val: alaris_observable_state)
3 : alaris_observable_state =
4 LET s: alaris_multiplier =
5 IF display(st) = 10 % 2nd refinement
6 OR display(st) = 0 THEN x1
7 ELSIF (display(st) < 100
8 AND fractional(display(st),10) = 0)
9 OR %...

After the second reÞnement, a new veriÞcation with
SAL identiÞes another counterexample at the same ob-
servable state. This time, the prediction model expects
11 while the device model provides 20. This happens be-
cause of a sequence where the fast up button is pressed
& held long enough to make the internal timer of the
device 0. Therefore, this counterexample cannot be dis-
charged if the decision is to be taken solely on the value
of the current display Ñ when the display is 10, the
multiplier can be either x1 or x10 depending on the
value of an hidden state variable.

7 Generating recommendations

Given that the modelled interactive number entry sys-
tems are not always predictable, two interesting ques-
tion are worth answering:

(i) What design changes could be applied to make
the design predictable? An answer to this question may
provide useful insights to device manufacturers about
the e!ect of di!erent features in interaction design.

(ii) Under what conditions do they become pre-
dictable? An answer to this question would provide in-
sights for user training, in that we can check whether
a reasonably simple strategy exists (other than reset-
ting the device and restart the programming task from

the beginning) that allows one to circumvent the pre-
dictability issues evident in the analysis of the two pumps.

Based on these questions, recommendations can be
given in the form of veriÞed design solutions and
veriÞed user strategies .

7.1 VeriÞed design solution for Alaris

The predictability issues of the Alaris pump analysed
here are essentially linked to the step multiplier. The
step multiplier is automatically selected by the device
during the interactions according to rules linked to the
interaction history and the current display value. In-
formation about the selected step multiplier cannot be
derived from the current persistent output of the de-
vice. Three possible design solutions follow. For each
proposed solution, we checked with SAL that the pre-
dictability property holds.

Avoid using step multipliers. The simplest way to Þx
the interaction design of the pump and make it pre-
dictable in any situation would be to avoid the use
of step multipliers. This solution would be consistent
with the classic user interface design principle of mak-
ing critical actions (in this case, programming the pump
with a high rate) more di"cult to perform [26,25]: the
higher the number to be entered, the longer the inter-
action. The solution might be judged inconvenient by
designers or operators, as it would increase the time to
enter certain values in the pump, and thus make the
overall programming task less e"cient in certain situa-
tions. Though, an experiment run by Oladimeji et al. to
compare error detection of two number entry interface
styles pointed out that users frequently overshoot and
undershoot their target numbers when using the spe-
ciÞc Alaris interface considered in this work [27]. This
hunt for the target number could be attributed to the
use of step multipliers in the Alaris system.

Enhance the feedback. The feedback about the result
of actions could be enhanced by providing information
about the e!ect of key-presses on the step multiplier.
The feasibility of this solution should be carefully eval-
uated, because the capabilities of the physical display
might not allow a proper visualisation. There is ex-
perimental evidence that humans have numerous bot-
tlenecks in performing simultaneous processing of sev-
eral pieces of information, especially if the information
is gathered from a single channel, e.g., only from the
auditive or from the visual channel. A typical failure
due to these bottlenecks is known asattentional tun-
nelling, i.e., the user Òlocks inÓ on speciÞc information

The benefits of formalising design guidelines: A case study on the predictability of drug infusion pumps 19

and inadvertently drops other (possibly relevant) infor-
mation [16]. Therefore, in such cases, rather than en-
hancing the feedback, a better solution is to reduce the
functionalities of the device.

It is worth noting that a variant of the Alaris pump
with an enhanced feedback has been actually imple-
mented in a recent release of the Þrmware of this pump.
Namely, in the new Þrmware, indicators in the form
of double and single underlines are shown on the dis-
play to highlight which digit would change when any of
the four chevron buttons are pressed. The fast up and
fast down (i.e., the double chevron keys) will change
the digit highlighted by the double underline, while the
slow up and slow down (i.e., the single chevron keys)
will change the digit highlighted by the single underline.

Allow users take active control of step multipliers. Chan-
ging the control widget used for number entry into one
which would allow the user to explicitly control the step
multipliers could also render the system predictable.
Examples of such widgets are those used in traditional
document scrolling tasks. These include but are not lim-
ited to pressure sensitive buttons, isometric joysticks or
rotary encoders [18]. Using these types of widgets, the
changes in the step multiplier could be mapped to ac-
tive user actions of applying more pressure on a but-
ton or quickly turning a knob rather than the passive
changes where changes in the step multiplier depends
on the duration of the interaction.

7.2 VeriÞed design solutions for BBraun

The predictability issues of the BBraun pump analysed
here derive from the use of memory. In particular, the
problem lies in the fact that the user is not able to
tell whether the memory has been cleared or not from
the persistent state of the device. Three possible design
solutions follow. For each proposed solution, we checked
with SAL that the predictability property holds.

Don’t use memory. The use of memory usually makes
devices unpredictable [13]. Without memory, the func-
tionality of the device at certain boundary cases may
need to be revised. For instance, when overshooting the
maximum value, the undo feature available when using
memory would not be available. This solution is thus
linked to the following one, which deals with overshoot-
ing the maximum and minimum values that can be en-
tered in the device.

Avoid overshooting. Overshooting can be avoided by
ignoring or blocking the button presses that cause over-
shooting. The speciÞc solution for ignoring or blocking

button presses needs to be carefully evaluated as there
is a trade-o! between permissiveness [35] and the num-
ber and types of audible/visual cues needed for captur-
ing the user attention when overshooting. This solution
implies that setting the maximum and minimum val-
ues on the interfaces would require more e!ort from
the user in that it would need to be done by using
a precise sequence that take the device to that value.
However the possible consequence would be that they
are more aware of setting values at these boundaries.
This solution therefore supports the classic user inter-
face design principle of making critical actions more
di"cult to perform so as to ensure when done they are
done deliberately [26,25].

Increase the visibility of the system state. This ensures
that the display of the device shows su"cient informa-
tion to understand the current state of the device. For
instance, an indication that the memory of the device
is not empty would help users identify situations where
the device seamlessly changes the function associated to
the buttons (e.g., when the down button becomes a re-
call memory button). As discussed for the other pump,
this solution should be carefully evaluated in order to
avoid attentional tunnelling [16].

7.3 VeriÞed user strategies

When the design of a device cannot be changed (e.g.,
because the manufacturer has consciously chosen to lose
predictability in favour of other features, or because the
hospital ward needs to use the pumps while waiting
the problem to be Þxed), an important alternative is
to o!er verified users strategies to mitigate against the
consequences of that loss. Strategies can be obtained
by reasoning about the features driving the interactive
behaviour of the pumps. In the following, we discuss
simple veriÞed strategy that can be used to make the
analysed devices predictable.

It is worth remarking that the interaction strategies
we deÞne here are in fact workarounds to avoid cer-
tain unwanted behaviours of the device. As such, if the
deÞnition of predictability considered here is a desired
feature of the device, the manufacturer should modify
the interaction design to enable predictability without
workarounds Ñ systems that rely on error-free perfor-
mance are doomed to failure [21].

BBraun user strategy. From the developed speciÞca-
tion we can notice that, if the memory is clear, then
the interactions with the pump become predictable. We
veriÞed this claim in SAL with the LTL property shown
in Listing 26.

20 Paolo Masci et al.

Listing 26: Verification of the BBraun user strategy

1 bbraun_predictable_weak: CLAIM
2 bbraun_system |-
3 G (NOT valid?(memory(st))
4 => display(st) = predicted);

The claim is successfully veriÞed. By studying the spec-
iÞcation, we can notice that a simple strategy can be
deÞned to clear the content of the memory and hence
guarantee predictable interactions in any situation with
this model of the BBraun pump Ñ clear the memory
by changing the cursor position with the left and right
arrow keys. It is interesting to note here that another
simple strategy, one where the user remembers the pre-
vious state, fails with this design.

Alaris user strategy. From the developed speciÞcation,
we can notice that the step multiplier can change only
during press& hold interactions with the fast up and
fast down keys. Therefore, if we limit the possible inter-
actions by avoiding press& hold actions on the fast up
and fast down buttons, the interaction becomes always
predictable. We can verify this claim in SAL by deÞn-
ing a new module (alaris strategy) that imposes
such constraints on the interactions:

Listing 27: User strategy as observer module

1 alaris_strategy : MODULE =
2 BEGIN
3 INPUT event: Event
4 OUTPUT prev_event: Event
5 OUTPUT ok: boolean
6 INITIALIZATION
7 ok = true;
8 prev_event = release;
9 TRANSITION

10 [ok AND (prev_event = press_UP
11 OR prev_event = press_DOWN) -->
12 ok’ = (event = release);
13 prev_event’ = event
14 [] ELSE -->] END

The predictability claim can then be veriÞed against a
system given by the parallel composition of the device
model, the prediction model, andalaris strategy
(as shown in Listing 28).

Listing 28: Verification of the Alaris user strategy

1 alaris_system_new: MODULE
2 = alaris_constraint || alaris_device
3 || alaris_prediction
4 || alaris_strategy;
5 alaris_predictable_new: CLAIM
6 alaris_system_new |-
7 G (ok => (display(st) = predicted));

The claim is successfully veriÞed Ñ if only button clicks
are used to interact with the device, then the device is
predictable. We can notice also that, since the slow up
and slow down chevron keys do not change the multi-
plier in any situation, an alternative strategy is also to
use only such two keys.

8 Discussion and conclusions

In this paper, we have shown that formal methods can
be used for studying predictability of detailed speciÞca-
tions of commercial interactive number entry systems:
on the one hand, the mere exercise of building a formal
speciÞcation of the interface gave us useful insights on
possible design issues, even before performing the anal-
ysis with the model checking tool; on the other hand,
the formal tool enabled us to explore all possible be-
haviours, thus allowing us to explore the validity of the
proposed design modiÞcations.

The increasing demand for advanced functionality
forces single devices to be used for a wide variety of
tasks, but under the Þxed physical constraints of the
devices. It is understandable that over time users (or or-
ganisations) would require more sophisticated interac-
tive systems that assist their varied tasks. However, the
required generality introduces inconsistent behaviour to
the user interface, which is sometimes an obstacle to the
userÕs mental model development. In addition, even if
users have a complete and sound mental model of the
system, the increasing number of hidden states that
are inevitable with general-purpose systems makes it
harder for them to predict the consequences of their ac-
tions. In fact, when devices are closely examined, there
are many boundary cases where interactive functional-
ity seems awkward; this compromises the predictability
of the devices, and hence may lead to unnecessary haz-
ards in use.

Several frameworks have been presented in the lit-
erature for human-machine interaction and human er-
ror in the context of interface design. However, none of
them is currently widely accepted as a reference. Most
of these frameworks are based on psychological assump-
tions. Although they help identify issues, of the human
factors kind, only few of them provide means to identi-
fying engineering solutions that can be used for improv-
ing device designs. Our work on predictability is a Þrst
step towards addressing this gap. As we have shown,
the predictability analysis links to several high-level de-
sign principles illustrated in the HF75:2009 standard
for human factors. The analysis can be mechanically
performed with a veriÞcation tool. The analysis results
help designers understand how to Þx identiÞed design

The benefits of formalising design guidelines: A case study on the predictability of drug infusion pumps 21

problems and help users overcome predictability issues
when the design cannot be modiÞed.

Failure of the predictability property holding is not
necessarily in itself a criticism of any design. There are
many trade o!s in design, and loss of predictability
because of the presence of other features may be less
important in practice than the value of some other fea-
tures to the user. Indeed there may be better deÞnitions
of predictability than we consider in this paper. The
point of the paper, however, is to show that plausible
interaction design properties can be formalised, that
real devices can be very e!ectively analysed for their
compliance to such properties, and that problems can
be precisely identiÞedand hence Þxed where this is
deemed appropriate given the trade-o!s involved. Our
deÞnition of predictability is taken from the HCI re-
search literature, so it is a meaningful property, and it
is clear that loss of predictability as we deÞne it will
increase speciÞed hazards in operation. Whether those
hazards are somehow compensated for by other design
features is an important question that lies beyond the
scope of this paper.

In an idealised world many deÞnitions of predictabil-
ity would be compared, and the formal analyses based
on them compared with empirical experiments. That
would allow one to say deÞnitively that certain concep-
tions of predictability are correlated with user perfor-
mance and hence that speciÞc design features can be
identiÞed to improve performance. However with hu-
man error rates being so low and devices so complex, it
is unlikely that valid experiments could be performed
Ñ there are no easy empirical experiments that can ex-
plore the non-occurrence of problems! As an alternative,
here we argue that what is important is that a formal
analysis of predictability allows one to reason about
performance. If certain features are identiÞed as prob-
lematic or potentially problematic, then a developer can
take steps to better manage these features. Relative to
the deÞnition of predictability one then avoids identi-
Þed design problems.

In future, we plan to use empirical evaluation and
hence develop an evidence-based balance between pre-
dictability and functionality. In particular, we aim to
validate to which extent predictable number entry sys-
tems makes a di!erence when taken into account in the
design.

Acknowledgements Funded as part of the CHI+MED: Mul-
tidisciplinary Computer-Human Interaction research for the
design and safe use of interactive medical devices project, EP-
SRC Grant Number EP/G059063/1, and Extreme Reasoning,
Grant Number EP/F02309X/1.

References

1. List of errorprone abbreviations, symbols and dose des-
ignations (2006). URL http://www.ismp.org/tools/
abbreviations/

2. Abowd, G.D., Coutaz, J., Nigay, L.: Structuring the space
of interactive system properties. In: Proceedings of the
IFIP TC2/WG2.7 Working Conference on Engineering
for Human-Computer Interaction, pp. 113–129. North-
Holland Publishing Co., Amsterdam, The Netherlands,
The Netherlands (1992). URL http://portal.acm.
org/citation.cfm?id=647103.717569

3. Arney, D., Jetley, R., Jones, P., Lee, I., Sokolsky,
O.: Formal methods based development of a pca in-
fusion pump reference model: Generic infusion pump
(gip) project. Joint Workshop on High Confidence
Medical Devices, Software, and Systems and Med-
ical Device Plug-and-Play Interoperability 0, 23–33
(2007). DOI http://doi.ieeecomputersociety.org/10.
1109/HCMDSS-MDPnP.2007.36

4. B-Braun Melsungen AG: Infusomat space and accessory:
Instruction for use

5. Back, J., Brumby, D.P., Cox, A.L.: Locked-out: inves-
tigating the e↵ectiveness of system lockouts to reduce
errors in routine tasks. In: Proceedings of the 28th of
the international conference extended abstracts on Hu-
man factors in computing systems, CHI EA ’10, pp.
3775–3780. ACM, New York, NY, USA (2010). DOI 10.
1145/1753846.1754054. URL http://doi.acm.org/
10.1145/1753846.1754054

6. Bass, E.J., Feigh, K.M., Gunter, E.L., Rushby, J.M.: For-
mal modeling and analysis for interactive hybrid systems.
ECEASST 45 (2011)

7. Bolton, M.L., Bass, E.J.: Formally verifying human—
automation interaction as part of a system model: lim-
itations and tradeo↵s. Innovations in Systems and
Software Engineering 6(3), 219–231 (2010). DOI 10.
1007/s11334-010-0129-9. URL http://dx.doi.org/
10.1007/s11334-010-0129-9

8. Campos, J.C., Harrison, M.D.: Interaction engineering
using the ivy tool. In: Proceedings of the 1st ACM
SIGCHI symposium on Engineering interactive comput-
ing systems, EICS ’09, pp. 35–44. ACM, New York,
NY, USA (2009). DOI 10.1145/1570433.1570442. URL
http://doi.acm.org/10.1145/1570433.1570442

9. Campos, J.C., Harrison, M.D.: Modelling and analysing
the interactive behaviour of an infusion pump. ECEASST
45 (2011)

10. Cauchi, A., Gimblett, A., Thimbleby, A., Curzon, P.,
Masci, P.: Safer “5-key” number entry user interfaces us-
ing Di↵erential Formal Analysis. 26th Annual Conference
on Human-Computer Interaction, BCS-HCI (2012)

11. Degani, A., Heymann, M.: Formal verification of human-
automation interaction. Human Factors 44(1), 28–43
(2002)

12. Department fo Health and Human Services, US Food and
Drug Administration. Total Product Life Cycle: Infusion
Pump - Premarket Notification [510(k)] Submissions -
Draft Guidance, April 2010.

13. Dix, A.J.: Formal methods for interactive systems. Com-
puters and people series. Academic Press (1991). URL
http://www.hiraeth.com/books/formal/

14. Dix, A.J., Runciman, C: Abstract models of interactive
systems. People and Computers: Designing the Interface.
Cambridge University Press, 13–22 (1985)

15. Harrison, M.D. and Thimbleby, H.: Abstract models
of interactive systems. Proceedings British Computer

http://www.ismp.org/tools/abbreviations/
http://www.ismp.org/tools/abbreviations/
http://portal.acm.org/citation.cfm?id=647103.717569
http://portal.acm.org/citation.cfm?id=647103.717569
http://doi.acm.org/10.1145/1753846.1754054
http://doi.acm.org/10.1145/1753846.1754054
http://dx.doi.org/10.1007/s11334-010-0129-9
http://dx.doi.org/10.1007/s11334-010-0129-9
http://doi.acm.org/10.1145/1570433.1570442
http://www.hiraeth.com/books/formal/

22 Paolo Masci et al.

Society Conference on Human Computer Interaction
(HCI’85), Cambridge University Press, 161–171 (1985)

16. Endsley, M.R., Bolte, B., Jones, D.G.: Designing for Situ-
ation Awareness: An Approach to User-Centered Design.
Taylor and Francis (2003)

17. Health, C.: Alaris GP volumetric pump: Directions for
use (2006)

18. Hinckley, K., Cutrell, E., Bathiche, S., Muss, T.: Quanti-
tative analysis of scrolling techniques. In: Proceedings of
the SIGCHI conference on Human factors in computing
systems: Changing our world, changing ourselves, CHI
’02, pp. 65–72. ACM, New York, NY, USA (2002). DOI
10.1145/503376.503389. URL http://doi.acm.org/
10.1145/503376.503389

19. Javaux, D.: Explaining sarter and woods’ classical re-
sults. In: Second Workshop on Human Error, Safety, and
Software Design (1998)

20. Kim, B., Ayoub, A., Sokolsky, O., Lee, I., Jones, P.,
Zhang, Y., Jetley, R.: Safety-assured development of
the gpca infusion pump software. In: Proceedings of
the ninth ACM international conference on Embedded
software, EMSOFT ’11, pp. 155–164. ACM, New York,
NY, USA (2011). DOI 10.1145/2038642.2038667. URL
http://doi.acm.org/10.1145/2038642.2038667

21. Leape, L.: Error in medicine. Journal of the American
Medical Association 272(23), 1851–1857 (1994)

22. Masci, P., Rukšėnas, R., Oladimeji, P., Cauchi, A., Gim-
blett, A., Li, Y., Curzon, P., Thimbleby, H.: On formal-
ising interactive number entry on infusion pumps. ECE-
ASST 45 (2011)

23. Medicines and Healthcare products Regula-
tory Agency (MHRA): Device bulletin, infu-
sion systems, db2003(02) v2.0 (2010). URL
http://www.mhra.gov.uk/Publications/
Safetyguidance/DeviceBulletins/CON007321

24. de Moura, L., Owre, S., Ruess, H., Rushby, J., Shankar,
N., Sorea, M., Tiwari, A.: SAL 2. In: R. Alur, D.A.
Peled (eds.) Computer Aided Verification: CAV 2004,
Lecture Notes in Computer Science , vol. 3114, pp. 496–
500. Springer-Verlag (2004)

25. Norman, D.A.: Design rules based on analyses of hu-
man error. Communications of the ACM 26(4), 254–258
(1983). DOI http://doi.acm.org/10.1145/2163.358092

26. Norman, D.A.: The Design of Everyday Things, reprint
paperback edn. Basic Books, New York (2002)

27. Oladimeji, P., Thimbleby, H., Cox, A.: Number entry in-
terfaces and their e↵ects on error detection. In: Pro-
ceedings of the 13th IFIP TC 13 international conference
on Human-computer interaction - Volume Part IV, IN-
TERACT’11, pp. 178–185. Springer-Verlag, Berlin, Hei-
delberg (2011). URL http://dl.acm.org/citation.
cfm?id=2042283.2042302.

28. Perrow, C.: Normal accidents : living with high-risk tech-
nologies. Basic Books, New York (1984)

29. Rasmussen, J.: The role of error in organizing behaviour.
Ergonomics 33, 1185–1199 (1990)

30. Reason, J.: Human Error, 1 edn. Cambridge University
Press (1990)

31. Rushby, J.: Using model checking to help discover
mode confusions and other automation surprises. Re-
liability Engineering and System Safety 75(2), 167–
177 (2002). Available at http://www.csl.sri.com/
users/rushby/abstracts/ress02

32. Rushby, J.M.: Modeling the human in human factors.
In: Proceedings of the 20th International Conference
on Computer Safety, Reliability and Security, SAFE-
COMP ’01, pp. 86–91. Springer-Verlag, London, UK, UK

(2001). URL http://dl.acm.org/citation.cfm?
id=647399.724851

33. Ryan, M., Fiadeiro, J.L., Maibaum, T.S.E.: Sharing ac-
tions and attributes in modal action logic. In: TACS, pp.
569–593 (1991)

34. Thimbleby, H.: Generative user-engineering principles for
user interface design. In: B. Shackel (ed.) Proceedings
First IFIP Conference on Human Computer Interaction,
INTERACT’84, vol. 2, pp. 102–107 (1984)

35. Thimbleby, H.: Permissive user interfaces. International
Journal of Human-Computer Studies 54(3), 333–350
(2001). DOI 10.1006/ijhc.2000.0442

36. Thimbleby, H.: Interaction Walkthrough: Evaluation of
safety critical interactive systems. In: G. Doherty,
A. Blandford (eds.) DSVIS 2006, The XIII International
Workshop on Design, Specification and Verification of In-
teractive Systems, Lecture Notes in Computer Science ,
vol. 4323, pp. 52–66. Springer Verlag (2007)

37. Thimbleby, H., Harrison, M.D.: Formalising guidelines for
the design of interactive systems. In: S. Cook, P. Johnson
(eds.) Proceedings British Computer Society Conference
on Human Computer Interaction, HCI’85, pp. 161–171.
Cambridge University Press (1985)

38. Thimbleby, H.W., Gimblett, A.: Dependable keyed data
entry for interactive systems. ECEASST 45 (2011)

39. Trafton, G.J., Monk, C.A.: Task interruptions. Reviews
of Human Factors and Ergonomics 3, 111–126(16)
(2007). DOI doi:10.1518/155723408X299852. URL
http://www.ingentaconnect.com/content/hfes/
rhfe/2007/00000003/00000001/art00005

40. Tucker, A.L., Spear, S.J.: Operational failures and inter-
ruptions in hospital nursing. Health Services Research
41(3p1), 643–662 (2006). DOI 10.1111/j.1475-6773.
2006.00502.x. URL http://dx.doi.org/10.1111/j.
1475-6773.2006.00502.x

41. Vincent, C.: Patient Safety, second edn. John Wiley &
Sons (2011)

http://doi.acm.org/10.1145/503376.503389
http://doi.acm.org/10.1145/503376.503389
http://doi.acm.org/10.1145/2038642.2038667
http://www.mhra.gov.uk/Publications/Safetyguidance/DeviceBulletins/CON007321
http://www.mhra.gov.uk/Publications/Safetyguidance/DeviceBulletins/CON007321
http://dl.acm.org/citation.cfm?id=2042283.2042302
http://dl.acm.org/citation.cfm?id=2042283.2042302
http://www.csl.sri.com/users/rushby/abstracts/ress02
http://www.csl.sri.com/users/rushby/abstracts/ress02
http://dl.acm.org/citation.cfm?id=647399.724851
http://dl.acm.org/citation.cfm?id=647399.724851
http://www.ingentaconnect.com/content/hfes/rhfe/2007/00000003/00000001/art00005
http://www.ingentaconnect.com/content/hfes/rhfe/2007/00000003/00000001/art00005
http://dx.doi.org/10.1111/j.1475-6773.2006.00502.x
http://dx.doi.org/10.1111/j.1475-6773.2006.00502.x

	Introduction and motivation
	Predictability and the ANSI/AAMI HF75:2009 standard for medical devices
	Overview of the approach
	Related work
	Formal specification of the interactive number entry systems of two infusion pumps
	Analysis
	Generating recommendations
	Discussion and conclusions

