Model-based development of the Generic PCA
infusion pump user interface prototype in PVS

Paolo Masci!, Anaheed Ayoub?, Paul Curzon!,
Insup Lee?, Oleg Sokolsky?, and Harold Thimbleby?

1 Queen Mary University of London, UK
{paolo.masci,paul.curzon}@eecs.qmul.ac.uk

2 University of Pennsylvania, PA, USA 3 Swansea University, UK
{anaheed, lee, sokolsky}@cis.upen.edu harold@thimbleby.net

Abstract. A realistic user interface is rigorously developed for the US
Food and Drug Administration (FDA) Generic Patient Controlled Anal-
gesia (GPCA) pump prototype. The GPCA pump prototype is intended
as a realistic workbench for trialling development methods and tech-
niques for improving the safety of such devices. A model-based approach
based on the use of formal methods is illustrated and implemented within
the Prototype Verification System (PVS) verification system. The user
interface behaviour is formally specified as an executable PVS model.
The specification is verified with the PVS theorem prover against rel-
evant safety requirements provided by the FDA for the GPCA pump.
The same specification is automatically translated into executable code
through the PVS code generator, and hence a high fidelity prototype is
then developed that incorporates the generated executable code.

Keywords: Formal methods; Model-based development; Medical devices; User
interface prototyping.

1 Introduction and motivation

Infusion pumps are medical devices used to deliver drugs to patients at precise
rates and in specific amounts. The current infusion pumps incorporate sophis-
ticated software, of around tens of thousands of lines of program code [9]. This
complexity may make infusion pumps flexible and configurable, but it introduces
new risks as software correctness is hard to verify. Traditional manual verifica-
tion and validation activities based on manual inspection, code walkthroughs
and testing are insufficient for catching bugs and design errors in such com-
plex software. Unfortunately there are currently no widely accepted techniques
for development and verification of software for medical devices, nor standard
guidelines to ensure that a device meets given safety requirements [§].
Numerous adverse events have been reported that are associated with infu-
sion pumps. Reports from the US Food and Drug Administration (FDA) show
that some of these incidents are due to use errors and software failures caused
by poor software design [5]. Because of this, several device recalls have been

2 P. Masci, A. Ayoub, P. Curzon, I. Lee, O. Sokolsky, H. Thimbleby

issued: for instance, 87 models of infusion pump, affecting all infusion pump
manufacturers, were recalled over 2005 to 2009 in the US [5].

The FDA is promoting the development of so-called Generic Infusion Pump
(GIP) models and prototypes as a way to demonstrate how rigorous development
methods can substantially improve confidence in the correctness of software. For
instance, in [1], the FDA presents a research prototype for generic design of
Patient Controlled Analgesia (PCA) pumps, called the Generic PCA (GPCA)
pump. We explain PCA pumps more fully below.

The GPCA itself is not yet a real medical device. However, because its func-
tionalities and details closely resemble those of a real medical device, it can be
used as a realistic workbench. Successful application of methods and tools to the
GPCA prototype should indicate that they are viable for commercial devices.

The importance of user interface design is well understood by regulators [21].
However, hardly any concrete examples of model-based development of user in-
terfaces have been explored that take account of human factors or human factors
engineering. In our previous work, we illustrated how verification tools could be
used to verify the design of commercial infusion pump user interfaces against
properties that capture human factors concerns [416,/13}/14] and safety require-
ments [12]: potential issues were identified precisely, and verified design solutions
that could fix the identified issues were presented. This work builds on our pre-
vious work, and extends it by introducing a model-based development approach
for rapid prototyping of medical device user interfaces that are verified against
given safety requirements. The approach presented in this paper is illustrated
through the development of core parts of the user interface of the GPCA.

Contributions. The main contribution of this paper is the detailed model-
based development of a data entry system for the GPCA user interface within
Prototype Verification System, PVS [18]. The specification of the data entry sys-
tem of the GPCA user interface incorporates safety features that can mitigate
use errors, and the specification is formally verified against safety requirements
provided by the FDA within PVS, a standard system commonly used for this
purpose. The verified model is then automatically transformed into executable
code through the PVS code generator, and the generated code is then incorpo-
rated in a prototype that can be executed.

2 Related work

In this paper, the model-based approach is implemented using the Prototype
Verification System (PVS) [18]. PVS is a state-of-the-art verification tool that
provides an expressive specification language based on higher-order logic, a lan-
guage mechanism for theory interpretation [19], a verification engine based on
automated theorem proving, and a code generator for automatic translation of
PVS specifications into executable code [23].

PVS is only one approach of course, and other tools could have been used
to develop the prototype. Our choice was guided by pragmatics linked to best
current development practices — the need to specify safety requirements inde-

Model-based development of the GPCA user interface within PVS 3

Programming unit & pump console Keypad

Pump control

‘ User Interface ‘ [o T — = = = | =
Please use the up and down buttons to I O EEmmss
adjust the volume of fluid to be infused. I Power
i
Alarm Detection I 250 When done, press the Confirm button to Il pareCot
Component State Controller | set the new value. Il
[~ control Buttons Bolus
Hardware Components L Confirm 1 Cancel 1 Bolus Button
(delivery mechanism, power unit, ... ——
(a) GPCA architecture (b) The original GPCA user interface in Matlab

Fig. 1. Schematic of the FDA’s Generic PCA infusion pump prototype.

pendently, expressiveness of the specification language (here, PVS), and auto-
mated code generation from verified specifications. In , different tools are
used to generate a prototype of the GPCA pump controller with a model-based
approach: safety requirements are formalised as properties of a Uppaal model of
the GPCA controller, and the Times code generator is used for translating the
model into platform-independent C code. In [27], a model of the Generic Insulin
Infusion pump controller are developed in Event-B using the Rodin platform.
The model is verified against selected safety requirements related to timing is-
sues. The development of a prototype from the verified model was not in the
scope of that work. In [3], model-based development is used to generate a run-
time software monitor that validates the behaviour of an insulin infusion pump
against safety requirements. Petri Nets are used to specify the behaviour of the
monitor, and then the specification is manually translated into Java code.

No prior work addresses model-based development of realistic user interfaces
for infusion pumps.

3 The Generic PCA (GPCA) pump

PCA pumps are a class of infusion pump used to administer pain relief medica-
tion. They are employed for self-administration where a patient is able to request
pain relief in controlled amounts when they need it. The patient interacts with
the PCA pump using a single button, which is used to request additional pre-
defined doses of drug. The intended infusion parameters are programmed in
advance by clinicians. In the current generation of infusion pumps, clinicians
program infusion parameters by interacting with buttons on the user interface.

The FDA has developed a Matlab Simulink/Stateflow model of the Generic
PCA (GPCA) pump that captures the core functionalities of PCA pumps in
general. The GPCA model has a layered architecture (see Figure . The top
layer is the user interface, which presents the state of the infusion pump and
allows users to program infusion parameters. The software controller is the mid-
dle layer in the architecture, and includes two components: a state controller
and alarm detection component. The state controller drives the drug adminis-
tration process and supervises communication among the modules of the GPCA

4 P. Masci, A. Ayoub, P. Curzon, I. Lee, O. Sokolsky, H. Thimbleby

pump. The alarm detection component handles alarms and warnings. The lowest
layer models the hardware components, such as the delivery mechanism (peri-
stalitic motors and air bubble sensors, etc) and power unit (includind the battery
charger, etc).

The GPCA user interface, as provided with the original model [21], has the
layout shown in Figure The user interface includes the following elements:
a programming unit and pump console, which renders information about the
pump state and allows users to set infusion parameters; and a keypad, which
allows users to send commands to the pump. Human factors were not considered
when developing this original user interface [21], as the user interface was used
primarily for development and debugging purposes.

3.1 GPCA safety requirements

The FDA has released an initial set of 97 GPCA safety requirements [1]. They
are formulated in natural language, and grouped into 6 main categories: infusion
control, which are dedicated to safety features and constraints that can mitigate
hazards resulting from incorrectly specified infusion parameters (e.g., flow rate
too high or too low); user interface, which describe constraints on user interface
functionalities that can help avoid accidental modification of infusion parame-
ters; error handling, which are dedicated critical alarming conditions; drug error
reduction, which define drug library functionalities; power and battery opera-
tions and system environment, which are dedicated to constraints on operating
conditions.

The GPCA safety requirements describe essential safety features and con-
straints that guarantee a minimum level of pump safety. The requirements were
obtained by reasoning about mitigation actions that could contrast identified
hazards associated with PCA pumps, as well as related causes of the identified
hazards. For instance, an identified hazard of PCA pumps is overinfusion, and
one of the causes is that the programmed flow rate is too high. A suggested
mitigation for this hazard is to make the flow rate programmable within given
rate bounds only. Starting from this suggested mitigation, corresponding GPCA
safety requirements are then formulated that can help check the mitigation bar-
rier in the pump.

The GPCA safety requirements were designed on the basis of a preliminary
hazard analysis for the controller of the pump. We found that almost half of
the requirements can be related to user interface functionalities, and correctly
capture basic human factors concerns. However, a hazard analysis specifically
addressing user interface functionalities is needed to cover a more complete set
of aspects related to human factors. We are currently starting this hazard anal-
ysis. Some examples of safety features and constraints that are currently not
considered in the GPCA safety requirements and can potentially make the user
interface design safer follows.

Illegal keying sequences shall be blocked during interactive data entry. An
illegal keying sequence is a sequence of key clicks resulting in an illegal value
(e.g., a value out of range) or illegal number format (e.g., a number with two

Model-based development of the GPCA user interface within PVS 5

_____ Verification
Ir:;z:':':zlmsearf]isty : Formalisation \)
Tt T - Reference + Theory >~ Proof RN
‘ dnterpretation. obligations \ Verification)

i

N GPCA-UT f
Infc)frer;\?l:rseifety (" Formalisation “y—» execuéa::le Specification
S~ -7 model

Graphical &
— " Code GPCA-UI LTS
Interaction ; < generation J prototype - \Vahdatlon P)

Prototyping

Fig. 2. The adopted model-based development approach.

decimal dots). Blocking an illegal keying sequence means that interaction is
halted when a key click results in an illegal keying sequence, and feedback is
provided to the user. Results presented in [4] and [25] show that this safety
feature can create useful mitigation barriers against keying slip errors.

Numbers rendered on the display shall follow the ISMP rules |7]. The Institute
for Safe Medical Practices (ISMP) promoted the adoption of two basic rules to
design correctly formatted dosage values: leading zeros (e.g., 0.1 mL) are always
required for fraction dose values; and trailing zeros (e.g., 1.0 mL) are always
avoided. These rules are distilled from best practice (e.g., 1.0 may be misread as
10) and aim to reduce medication errors through standardised formatting and
clear presentation.

Numbers rendered on displays shall follow the NPSA recommendations |26).
The UK National Patient Safety Agency (NPSA) recommends adherence to
the following guidelines to facilitate a correct identification of dosage values,
including: digits after the decimal point are rendered in smaller font size; the
visual salience of the decimal point is increased; using “TallMan” lettering for
names and units.

4 Development of the GPCA user interface

A GPCA user interface (hereafter, GPCA-UI) prototype is now developed using
a model-based approach. Within model-based development approaches, models
are used as primary artefacts during the whole development cycle: they present
a design specification that can be checked against given requirements, and then
code generation techniques are used to transform the model into a concrete
implementation for a specific platform. The adopted model-based development
approach consists of the following phases (as shown in Figure :

Specification. A GPCA-UI model is specified that defines the interactive
behaviour of the GPCA user interface. The specification is given in the form of
an executable model, that is a model whose specification is rich enough that it
can be systematically translated into a concrete code implementation.

6 P. Masci, A. Ayoub, P. Curzon, I. Lee, O. Sokolsky, H. Thimbleby

Verification. The developed GPCA-UI model is verified against a formali-
sation of selected GPCA safety requirements. This is done through an approach
based on theory interpretation. It is based on the idea of formalising safety re-
quirements as axioms of an abstract model (which we call the reference model);
proof obligations that need to be verified on the GPCA-UI model are automati-
cally generated by mapping functionalities of the abstract model into functional-
ities of the GPCA-UI model; a formal verification is then performed to discharge
the generated proof obligations. With this approach, safety requirements can be
developed independently from the GPCA-UI model.

Prototyping. A user interface prototype is developed. The prototype in-
corporates software code automatically generated from the verified GPCA-UI
model through code transformation. The prototype has a back-end that de-
fines the functionalities of the GPCA-UI, and a front-end that defines the visual
appearance of the GPCA-UI. The back-end is executed within a verified exe-
cution environment to ensure that correctness properties verified on the formal
specification are preserved at run-time when executing the generated code. The
front-end just renders information returned by the back-end. The prototype can
be used for validation purposes. The prototype implementation in PVS is further
elaborated in the following sub-sections.

4.1 Specification

The model is developed as a finite state machine. The state of the state machine
defines information observable on the GPCA-UT (e.g., values shown on a display)
and internal variables (e.g., values held by timers). State transitions of the state
machine define interactive functionalities activated by the operator (e.g., button
clicks) and internal events generated by the GPCA-UI (e.g., timer events).

The GPCA-UI model includes the typical functionalities provided by the
current generation of commercial PCA pump user interfaces. Due to space limi-
tations, only a qualitative description of the functionalities included in the model
is provided here without going into the specific details of the PVS model. The
full PVS model can be found at [2].

The GPCA-UI programming unit specifies the behaviour of a “5-key” number
entry [4,[17], as widely used in commercial infusion pumps. A different choice
could have been made (chevron keys, number pad, or others). Two functions
(up and down) edit the entered value by an increment step. The increment step
is proportional to the position of a cursor. Two functions (left and right) edit
the position of the cursor. The accuracy of the entered value is limited to two
decimal digits, and legal values are below between 0 and 99999. These limits
reflect those of commercial PCA pumps. Whenever these limits are violated,
interaction is halted and an alert message displayed.

The GPCA keypad specification defines the basic behaviour of typical com-
mands made available to the operator to control the state of the pump: turn
the pump on and off; start and stop an infusion. Additional functionalities not
implemented in this first version of the model include: edit infusion parameters;
view pump status; deliver an additional limited amount of drug upon demand.

Model-based development of the GPCA user interface within PVS 7

The model developed includes a specification of the communication protocol
with the GPCA controller developed by Kim et al in |10]. In the current version,
the protocol specification includes the sequence of commands to boot-strap the
pump controller.

4.2 Verification

Within the verification approach, safety requirements formulated in natural lan-
guage are formalised as predicates (see Figure . These predicates define the
functionalities of a logic-based model, which we call the reference model, which
encapsulates the semantics of the safety requirements by construction. The ref-
erence model is used for the verification of the GPCA-UI model by means of
a technique called theory interpretation [19], which is a verification approach
based on the idea of establishing a mapping relation between an abstract model
and a concrete model. The mapping relation is used to systematically translate
properties that hold for the abstract model into proof obligations that need to be
verified for the concrete model. In our case, the abstract model is the reference
model, and the concrete model is the GPCA-UI model. Hence, safety require-
ments encapsulated in the specification of the reference model are systematically
translated into proof obligations for the GPCA-UI model. Being able to discharge
the generated proof obligations through formal proof is a demonstration that the
GPCA-UI model meets the safety requirements. The GPCA-UI specification de-
veloped is then formally verified against the following GPCA requirements that
are relevant to the data entry system.

GPCA 1.1.1 The flow rate of the pump shall be programmable.

GPCA 1.1.2 At a minimum, the pump shall be able to deliver primary
infusion at flows throughout the range fmin and fmaz mL per hour.

GPCA 1.3.1 The volume to be infused settings shall cover the range from
Vmin 10 Umaz ML.

GPCA 1.3.2 The user shall be able to set the volume to be infused in j mL
increments for volumes below x mL.

GPCA 1.3.3 The user shall be able to set the volume to be infused in k mL
increments for volumes above x mL.

Example. Requirement 1.3.1 is formalised and verified to exemplify the verifica-
tion approach. A logic expression is created by extracting the relevant concepts
presented in the textual description: VTBI settings range (where VTBI means
volume of drug to be infused), vynin and vVya.. As shown in Listing these
concepts are used to define an uninterpreted predicate vtbi_settings_range in
PVS higher-order logic, and two symbolic constants v.min and v_max of type
non-negative real numbers. The state of the reference model is specified with a
new uninterpreted type, ui_state.

Listing 1.1. Part of the Reference Model

ui_state: TYPE
vtbi_setting_range (vmin,vmax: noneg_real) (st:ui_state): boolean
vmin,vmax: noneg_real

8 P. Masci, A. Ayoub, P. Curzon, I. Lee, O. Sokolsky, H. Thimbleby

GPCA-UI Layout
(executed within a web browser)

WebSockets

Verified GPCA-UI Logic
(executed within the PVSio environment)

WebSockets)
. Programming unit & Pump console Keypad
(bridge to the GPCA controller) (display, navigation buttons, confirmation buttons) (start/stop, bolus, edit, on/off)
(a) Architecture (b) GPCA-UI layout (HTML & JavaScript)

Fig. 3. The GPCA-UI prototype.

The predicate and constants are then encapsulated in the reference model by
formulating a property that always holds for the reference model (i.e., an aziom).
In PVS, axioms are boolean expressions annotated with the AXIOM keyword. Ax-
ioms can be formalised in a way that facilitates proof by structural induction. For
the considered example, the formalisation is as follows (see Listing . The ini-
tial state of the reference model (predicate init?) satisfies vtbi_settings_range
(the induction base); given a state stO of the reference model that satisfies
vtbi_settings_range, any state stl reachable from st0 through a transition
function (trans) of the reference model satisfies vtbi_settings range (the in-
duction step).

Listing 1.2. Axiom used to specify requirement R1

R1_Axiom: AXIOM

FORALL (st, st0O, stl: ui_state):

(init?(st) IMPLIES vtbi_settings_range(vmin,vmax) (st)) AND

((vtbi_settings_range (vmin,vmax) (st0) AND trans(stO, st1l))
IMPLIES vtbi_settings_range (vmin,vmax) (st1))

A relation is then defined that specifies how vtbi_settings_range is mapped
into the GPCA-UI model. In this case, the relation maps vtbi_settings_range
into a function that checks the vtbi range supported by the GPCA-UI model
(the second LAMBDA function in Listing [L.3)). Through this mapping, PVS is
able to automatically generate proof obligations that must be verified on the
GPCA-UI model in order to demonstrate compliance with the reference model
(and, hence, show that the safety requirement is met). The syntax for specify-
ing a theory interpretation in PVS is that of a PVS theory importing clause
(keyword IMPORTING followed by the model name, reference model_th in this
case) with actual parameters specifying the mapping relation (a list of substitu-
tions provided within double curly brackets). Listing gives a snippet of the
PVS theory interpretation specified for the considered requirement: it states that
the uninterpreted state of the reference model (ui_state) is mapped onto the
state of the GPCA-UI model (gpcaui_state). The uninterpreted predicate that
recognises the initial state of the reference model (init?) is mapped into the
interpreted predicate that recognises the initial GPCA-UI concrete model state
(gpcaui_init?). The uninterpreted predicate that identifies the set of transitions
of the reference model (trans) is mapped into a function that enumerates the
transition functions of the GPCA-UI concrete model (the first LAMBDA expres-

Model-based development of the GPCA user interface within PVS 9

sion in the specification snippet shown in Listing[I.3} in the expression, st_prime
identifies the next state obtained after applying a transition function).

Listing 1.3. Theory interpretation

IMPORTING reference_model_th

{{ uvi_state := gpcaui_state,
init? := gpcaui_init?,
trans := LAMBDA (st, st_prime: gpcaui_state):
st_prime = click_up(st) OR %...
vmin := 0, vmax := 99999,

vtbi_settings_range
:= LAMBDA (vmin, vmax: nonneg_real)(st: gpcaui_state):
vmin <= display(st) AND display(st) <= vmax
AND vmin <= vtbi(st) AND vtbi(st) <= vmax }}

Given this theory interpretation, PVS automatically generates the proof obli-
gation in Listing [[.4] which then needs to be discharged. The proof obligation
requires we show that, for all reachable states, it is always true that the display
and the VIBI range have values between v_min and v_max (0-99999 in this case).

Listing 1.4. Proof obligation

IMP_reference_model_th_R1_Axiom_TCC1: OBLIGATION
FORALL (st, stO, stl: gpcaui_state):
(gpcaui_init?(st) IMPLIES
0 <= st‘display AND st ‘display <= 99999
AND 0 <= st ‘vtbi AND st ‘vtbi <= 99999)
AND ((0 <= stO‘display AND stO ‘display <= 99999 AND O <= stO‘vtbi
AND stO‘vtbi <= 99999 AND stl = click_up(stO) OR %...)
IMPLIES 0 <= stl‘display AND st1‘display <= 99999
AND O <= sti1‘vtbi AND stl‘vtbi <= 99999);

The generated proof obligation can be discharged within the PVS theorem
prover thanks to using implicit subtype constraints [24] declared for the vtbi
type and the display type in the GPCA-UT model. (In PVS, implicit subtype
constraints are made explicit by using the command typepred.) After making
subtype constraints explicit, the proof can be completed in less than a second
with assert, a predefined decision procedure of the PVS theorem prover that
simplifies expressions using decision procedures for equalities and linear inequal-
ities. Alternatively, PVS can perform the proof automatically in seconds with
its command grind, a powerful predefined decision procedure that repeatedly
applies definition expansion, propositional simplification, and type-appropriate
decision procedures.

4.3 Prototyping

An interactive GPCA-UI prototype is now presented that incorporates the ver-
ified PVS specification. The utility of the prototype is that it allows validating
the behaviour of the generated code, and verifying aspects of the Ul that are
not formalised in the specification (e.g., the guidelines illustrated in Section.
Additionally, the prototype can be used by formal methods experts to engage
with domain experts such as human factors specialists.

10 P. Masci, A. Ayoub, P. Curzon, I. Lee, O. Sokolsky, H. Thimbleby

The GPCA-UI prototype can be downloaded at [2]. The prototype architec-
ture is split into a front-end and a back-end, as shown in Figure The front-
end is deployed on a tablet, which makes it possible to do realistic interaction
with the buttons on the user interface. The back-end is deployed on a server with
the PVSio [15] prototyping environment. Code automatically generated from the
PVS specification is executed exclusively on the back-end within the Lisp execu-
tion environment of PVS. This gives us confidence that the safety requirements
verified for the GPCA-UI specification are preserved when executing the Lisp
code automatically generated from the verified GPCA-UI specification.

The design choices for the front-end and back-end are valid for the illustrative
purpose of this work, that is to generate a realistic user interface for a research
prototype from a verified model:

The GPCA-UI front-end is responsible for the visual appearance of the
GPCA-UIL A “5-key” number entry layout based on navigation buttons has
been chosen because it is widely used in the current generation of commercial
PCA pumps. A different choice could have been made (chevron keys, number
pad, or others). The front-end is executed within a web browser, which very
conveniently allows using HTML code to render the GPCA-UI layout and using
JavaScript to capture user interactions with buttons and translate them into
function calls for the PVSio environment executed on the back-end. This trans-
lation from user actions to commands is performed on the basis of mappings
between interactive areas of the GPCA-UI and function names in the PVS spec-
ification of the GPCA-UIL. An example mapping that has been defined is the
following: a button click of the up arrow key triggers a call to function click_up
in the PVS specification. JavaScript is used to render the user interface state
returned by PVSio: it renders numbers in the GPCA-UI display in a way that
is compliant with the ISMP and NPSA recommendations given in Section [3.1
This can be validated through visual inspection. Note that the developed HTML
and JavaScript code do not add new behaviours to the GPCA-UI — they are
just used to send commands and render the state returned by the back-end.

The GPCA-UI back-end is responsible for the interactive behaviour of the
GPCA-UL The core of the back-end is the PVSio [15] prototyping environ-
ment. It provides an interactive command prompt that accepts higher-order
logic expressions. The expressions are evaluated in the Lisp execution environ-
ment of PVS: Lisp code is generated on-demand, and then executed. A result
is returned symbolically every time an expression is evaluated. The returned
expression is a GPCA-UI model state, in this case. For instance, writing the
expression click up(init) in the PVSio command prompt results in the eval-
uation of function click_up of the GPCA-UI specification starting from state
init. Lisp code is automatically generated, the function is executed, and a new
state returned. A web-server presents the PVSio command prompt as a service
of the GPCA-UI back-end. WebSockets, a standard protocol for bidirectional
low-latency communication between two endpoints over a TCP connection, are
used to enable communication between the front-end and the back-end.

Model-based development of the GPCA user interface within PVS 11

5 Conclusions

Making medical devices safer involves a constructive dialogue among stakehold-
ers (manufacturers, regulators, clinicians), and a verification approach based on
these generic models can help to make this dialogue precise, as well as having
the advantages of being computerized and runnable.

We have presented a model-based development approach for building a real-
istic user interface for the GPCA pump prototype. Although the user interface is
a research prototype and not a real medical device, the functionalities and level
of detail used in the specification are very similar to those of commercial PCA
pumps. Because of this, it is evident that the specification can be used as a real-
istic workbench, and the model-based developed approach used can in principle
be used as part of the development of real medical device user interfaces.

The model-based approach incorporates several concepts promoted by medi-
cal device regulators and which should be directly applicable to the development
of real medical devices. For instance, in [21] and [9], the FDA Office of Science
and Engineering Lab (OSEL) engineers have promoted the formalisation of safety
requirements as generic models that can be used for verification of real devices.

The model-based approach introduced here has some limitations that need
to be considered and should be the subject of further work: the formalisation
of safety requirements as predicates does not allow a formal verification of the
consistency of the safety requirements (e.g., contradictory safety requirements
can be formalised); the verification technique based on theory interpretation
allows the creation of mappings that are syntactically correct but semantically
wrong (e.g., visible display elements of the reference model can be mapped into
state variables of the concrete model that are not rendered on the display);
code generation is limited to Lisp code (new code generators that translate PVS
models into C [20] and Java [11] are still under development). Further work
is needed to demonstrate the approach for the entire user interface (we have
illustrated the approach just for the data entry system). We have started to
explore solutions to these limitations in [22] and [16].

Acknowledgements. This work is supported in part by the EPSRC (CHI+MED,
EP/G059063/1), NSF CNS-1035715, and NSF CNS-1042829.

References

1. GPCA Hazards and Safety Requirements. http://rtg.cis.upenn.edu/gip.php3l

2. The GPCA-UI Prototype. http://tinyurl.com/QMUL-GPCA-UI.

3. S. Babamir. Constructing a model-based software monitor for the insulin pump
behavior. Journal of Medical Systems, 36, 2012.

4. A. Cauchi, A. Gimblett, H. Thimbleby, P. Curzon, and P. Masci. Safer “5-key”
number entry user interfaces using differential formal analysis. In BCS-HCI ’12.

5. Center for Devices and Radiological Health, U.S. Food and Drug Administration.
White Paper: Infusion Pump Improvement Initiative, 2010.

6. M.D. Harrison, J. Campos, and P. Masci. Reusing models and properties in the
analysis of similar interactive devices. Innovations in Systems and Software Engi-
neering, Springer-Verlag London, 2013.

http://rtg.cis.upenn.edu/gip.php3
http://tinyurl.com/QMUL-GPCA-UI

12

10

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

P. Masci, A. Ayoub, P. Curzon, I. Lee, O. Sokolsky, H. Thimbleby

Institute for Safe Medication Practices (ISMP). Guidelines for standard order sets.
http://www.ismp.org/tools/guidelines.

R. Jetley, C. Carlos, and S. Purushothaman Iyer. A case study on applying formal
methods to medical devices. International Journal on Software Tools for Technol-
ogy Transfer, 5(4):320-330, 2004.

R. Jetley and P. Jones. Safety requirements based analysis of infusion pump soft-
ware. IEEE RTSS/SMDS, 2007.

B. Kim, A. Ayoub, O. Sokolsky, I. Lee, P. Jones, Y. Zhang, and R. Jetley. Safety-
assured development of the GPCA infusion pump software. In ACM international
conference on Embedded software, EMSOFT ’11. ACM, 2011.

L. Lensink, S. Smetsers, and M. van Eekelen. Generating Verifiable Java Code
from Verified PVS Specifications. NASA Formal Methods, pages 310-325, 2012.
P. Masci, A. Ayoub, P. Curzon, M.D. Harrison, I. Lee, and H. Thimbleby. Verifi-
cation of interactive software for medical devices: PCA infusion pumps and FDA
regulation as an example. In EICS2013. ACM Digital Library, 2013.

P. Masci, R. Ruksénas, P. Oladimeji, A. Cauchi, A. Gimblett, Y. Li, P. Curzon,
and H. Thimbleby. On formalising interactive number entry on infusion pumps.
ECEASST, 45, 2011.

P. Masci, R. Ruksénas, P. Oladimeji, A. Cauchi, A. Gimblett, Y. Li, P. Curzon,
and H. Thimbleby. The benefits of formalising design guidelines: A case study on
the predictability of drug infusion pumps. Innovations in Systems and Software
Engineering, Springer-Verlag London, 2013.

C. Munoz. Rapid prototyping in PVS. Technical Report NIA Report No. 2003-03,
NASA/CR-2003-212418, National Institute of Aerospace, 2003.

P. Oladimeji, P. Masci, P. Curzon, and H. Thimbleby. PVSio-web: a tool for rapid
prototyping device user interfaces in PVS. To appear in FMIS2013, 2013.

P. Oladimeji, H. Thimbleby, and A. Cox. Number entry interfaces and their effects
on error detection. In INTERACT’11, Berlin, Heidelberg, 2011. Springer-Verlag.
S. Owre, S. Rajan, J. Rushby, N. Shankar, and M.K. Srivas. PVS: Combining
Specification, Proof Checking, and Model Checking. In CAV96, volume 1102 of
LNCS. Springer Berlin Heidelberg, 1996.

S. Owre and N. Shankar. Theory Interpretations in PVS. Technical Report SRI-
CSL-01-01, Computer Science Lab, SRI International, Menlo Park, CA, 2001.

S. Owre and N. Shankar. A brief overview of PVS. In TPHOLs 2008, volume 5170
of LNCS, pages 22-27, Montreal, Canada, August 2008. Springer-Verlag.

A. Ray, R. Jetley, P. Jones, and Y. Zhang. Model-based engineering for medical-
device software. Biomedical Instrumentation & Technology, 44(6):507-518, 2010.
R. Ruks8énas, P. Masci, M.D. Harrison, and P. Curzon. Developing and verifying
user interface requirements for infusion pumps: a refinement approach. To appear
in FMIS2013, 2013.

N. Shankar. Efficiently Executing PVS. Technical report, Computer Science Lab-
oratory, SRI International, Menlo Park, 1999.

N. Shankar and S. Owre. Principles and pragmatics of subtyping in PVS. In
WADT ’99, volume 1827 of LNCS, pages 37-52. Springer-Verlag, 1999.

H. Thimbleby and H. Cairns. Reducing number entry errors: Solving a widespread,
serious problem. Journal Royal Society Interface, 7(51), 2010.

UK National Patient Safety Agency. Design for patient safety: A guide to the
design of electronic infusion devices, 2010.

H. Xu and T. Maibaum. An Event-B Approach to Timing Issues Applied to the
Generic Insulin Infusion Pump. In Foundations of Health Informatics Engineering
and Systems, volume 7151 of LNCS. Springer Berlin Heidelberg, 2012.

http://www.ismp.org/tools/guidelines

	Model-based development of the Generic PCA infusion pump user interface prototype in PVS
	Introduction and motivation
	Related work
	The Generic PCA (GPCA) pump
	GPCA safety requirements

	Development of the GPCA user interface
	Specification
	Verification
	Prototyping

	Conclusions

